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We study the externally driven damped nonlinear Schro¨dinger equation on an infinite line. The existence and
stability chart for its soliton solution is constructed on the plane of two control parameters: the forcing
amplitudeh and the dissipation coefficientg. For generic values ofh andg there are two coexisting solitons,
one of which (c1) is always unstable. The bifurcation diagram of the second soliton (c2) depends on the
dissipation coefficient: ifg,gcr , thec2 is stable for smallh and loses its stability via a Hopf bifurcation as
h is increased; ifg.gcr , thec2 is stable for allh. There are no ‘‘stability windows’’ in the unstable region.
We show that the previously reported stability windows occur only when the equation is considered on a finite
~and small! spatial interval.@S1063-651X~96!07210-8#

PACS number~s!: 03.40.Kf, 05.45.1b, 75.30.Ds

I. INTRODUCTION

A. Motivation

In the past 15 years the role of low-dimensional spatially
localized attractors in the nonlinear partial differential equa-
tions has been widely appreciated and a great depth of un-
derstanding of their properties achieved. Especially well
documented are the ac-driven damped sine-Gordon system

qtt2qzz1sinq52aqt1Gsin~vt! ~1!

and its small-amplitude limit, the externally driven damped
nonlinear Schro¨dinger equation~NLS!

iC t1Cxx12uCu2C52 igC2heiVt. ~2!

Both systems have numerous applications in a variety of
fields, including long Josephson junctions, easy-axis ferro-
magnets in microwave fields, and a rf-driven plasma.

An initial step in the analysis of the damped driven NLS
solitons was made by Kaup and Newell@1#. Under the as-
sumption that the damping and driving are weak, these au-
thors developed an inverse scattering-based adiabatic pertur-
bation procedure to realize that solitons lock to the frequency
of the driver. For smallh and g, there are two coexisting
phase-locked solitons, one corresponding to focus and the
other one to saddle of Kaup and Newell’s adiabatic equations
~i.e., one soliton is stable and the other one unstable against
adiabatic perturbations of their amplitude and phase!. This
result remains valid for the sine-Gordon breather, whose
small-amplitude counterpart is the NLS soliton@2#.

Subsequent computer simulations of Eqs.~1! and ~2! re-
vealed a rich variety of spatially coherent attractors, includ-
ing temporally periodic and chaotic states@3–5#. A particu-
larly important observation was that even in chaotic regimes,
the spatial structure of the field can be relatively simple and
described by only a few spatially localized solitonic modes.
A special role of the soliton~or soliton wave train if periodic

boundary conditions are implied! has therefore been rein-
forced for the damped driven systems.

The bifurcations and routes to chaos in the dynamics of a
single soliton were studied both numerically and analyti-
cally, mainly within perturbative and variational approaches
@6–13#. One of the main difficulties here is that soliton so-
lutions are not available in closed form.~Here by soliton we
mean the NLS soliton, the sine-Gordon breather, and their
wave train counterparts.! Particularly relevant for the present
work is Ref.@9#, where the spectrum of linearized excitations
was studied in order to understand the soliton’s instability
mechanism. Although providing an important qualitative in-
sight into the dynamics of eigenvalues on the complex plane,
the conclusions of@9# were based on a heuristic ansatz for
the solution~the phase was assumed to be constant! and had
to be verified using the numerically found soliton profiles
@15#.

In the undamped case (g50) the two coexisting soliton
solutions can be found explicitly; the stability problem is
also more amenable to analytical study in this case. In par-
ticular, one can prove that one of the solitons is unstablefor
all h, not necessarily small ones. As far as the second soliton
is concerned, it can lose its stability only via a Hopf bifur-
cation @14#.

Terrones, McLaughlin, Overman, and Pearlstein consid-
ered the full damped driven NLS equation on a finite interval
@15#. They constructedx-periodic solutions perturbatively, as
power series over small parameter multiplying the driver’s
strength and dissipation coefficient; also they have computed
these solutions numerically. For small values ofh andg two
soliton wave trains were recovered corresponding to the
saddle and focus of Kaup and Newell’s adiabatic equations.
In Ref. @15# the spatial period was linked to the value of the
dissipation coefficient; more precisely, Terroneset al. took
L515.18 for g50.1000, L513.15 for g50.1333,
L512.24 forg50.1538, andL510.73 forg50.2000. For
these values ofL andg they solved numerically the linear-
ized eigenvalue problem and demonstrated the existence of
the Hopf bifurcation.

An interesting phenomenon encountered in Ref.@15# was
thestability windows. Increasing the driver’s strength for the
fixed dissipation coefficient, the eigenvalue of the linearized

*Electronic address: igor@uctvms.uct.ac.za
†Electronic address: smirnov@maths.uct.ac.za

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/5707~19!/$10.00 5707 © 1996 The American Physical Society



operator crosses the imaginary axis into the right half of the
complex plane~unstable region!, then returns to the left half,
and then crosses into the unstable region again. There are
threeHopf bifurcations, therefore, and there is a certain re-
gion where the spatially periodic solution regains its stabil-
ity.

In this paper we consider localized solutions of Eq.~2! on
the infinite intervalL→`. We obtain these solutions, soli-
tons, numerically, and then analyze their stability. Our main
objective is to construct the existence and stability chart on
the (h,g) plane. This chart will serve as the first step towards
the complete attractor chart of Eq.~2!, similarly to the attrac-
tor chart for theparametricallydriven NLS

iC t1Cxx12uCu2C52 igC2heiVtC* , ~3!

which was constructed in Refs.@16,17#.
Although the solitons@i.e., solutions withcx(6`)50#

and soliton wave trains@for which c(x1L)5c(x)# may
look qualitatively similar when plotted on a finite interval
(2L/2,L/2), their respective domains of existence are differ-
ent. The stability of solutions is also very sensitive to the
interval length; in particular, we demonstrate that, increasing
L, the stability windows of Terroneset al., ‘‘close.’’ There
are no windows of stability on the stability chart of solitons
(L5`).

The paper is organized as follows. In Sec. II we consider
the spatially homogeneous~flat! solution and analyze its sta-
bility. In Sec. III the upper and lower boundaries of existence
domains of two solitons are found numerically. Section IV
deals with the stability of the solitons. We show that one of
the two solitons is always unstable and describe the stability
region of the other one. The issue of stability windows is
also addressed therein. Finally, in Sec. V our existence and
stability chart is compared with results of direct numerical
simulations available in the literature.

B. Relation to the sine-Gordon equation

Out of three parametersh,g, andV, only two are signifi-
cant. Indeed, ifC(x,t) is a solution of Eq.~1! corresponding
to h,g, andV, C̃(x,t) 5 kC(kx,k2t) is the solution corre-
sponding toh̃5k3h, Ṽ5k2V, andg̃5k2g. Hence we may
always fix, e.g.,V51 and retain onlyh and g as control
parameters@14,15#.

Next, the substitutionC(x,t)5eitc(x,t) reduces Eq.~1!
to an autonomous equation

ic t1cxx2c12ucu2c52 igc2h. ~4!

In this paper we will always be using the representation~4!.
On several occasions we will touch upon the results of Ter-
roneset al. @15#. These authors study the NLS equation, but
present their conclusions for the externally driven sine-
Gordon system, Eq.~1!. The correspondence between Eqs.
~1! and ~4! is established by the formulas

q~t,z!54«Re@ ic~ t,x!e2 ivt #1O~«3!; ~5!

x5«z, t5
«2

2
t; ~6!

a5«2g, G54«3h, ~7!

where« is the detuning of the sine-Gordon driving frequency
from unity:

v512
«2

2
. ~8!

Equation ~6! implies that the sine-Gordon interval length
LSG and the NLS intervalLNLS are related as

LNLS5«LSG. ~9!

For example, the results of Ref.@15# obtained for
v50.87,a50.04, andLSG524 correspond to our Eq.~4!
with g50.1538 andLNLS512.24.

II. FLAT-LOCKED SOLUTIONS:
EXISTENCE AND STABILITY DOMAINS

A. Three branches of flat solutions

We start with the analysis of spatially homogeneous solu-
tions (Cxx50) locked to the driver’s frequency:
C(x,t)5c0e

it . The complex amplitudec0 satisfies the alge-
braic equation

2c012uc0u2c052 igc02h. ~10!

Equation~10! was, of course, discussed before@7#; for the
most detailed analysis see@15#. We are, nevertheless, going
to reconsider it here because we will need some facts about
flat-locked solution in our study of solitons. The main dis-
tinction from the work of Terroneset al. is that we will con-
sider Eq.~10! in the whole range of parameters, while those
authors restricted themselves tosmall values ofh and g.
Also note that there are some notational distinctions:~i! our
NLS equation~2! has different coefficients with respect to
those in@15#; ~ii ! our driverh is real and positive andc0 is
complex, whereas Terroneset al.work with complexh and
real positivec0; ~iii ! the conclusions of@15# are presented in
the sine-Gordon rather than the NLS notation.

Writing c05aeiu, Eq. ~10! reduces to a system

2a12a352hcosu, ~11!

ga5hsinu. ~12!

Eliminating u, we obtain an equation cubic inr05a2:

4r0
324r0

21~11g2!r02h250. ~13!

Any positive rootr0 of this equation defines a flat-locked
solutionc05Ar0e

iu, where

tanu5
g

12r0
.

The analysis of Eq.~13! is straightforward. First of all, it
cannot have real negative roots.~Substituter052q and ob-
tain a sum of four strictly negative terms.! Hence there are
either three positive roots or one positive and two complex-
conjugate roots. In terms of
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P~r0!5r0@4r0
224r01~11g2!#,

Eq. ~13! is rewritten as

P~r0!5h2. ~14!

Wheng2>1/3, we havedP/dr0>0 and so Eq.~14! has just
one real root, whereas wheng2,1/3, there can be either one
or three real roots~Fig. 1!.

In the latter case the number of real roots is determined by
the sign of the expression

Q5S g221/3

3 D 31S g211/9

3
2h2D 2.

If Q,0, there are three real roots; ifQ.0, there is just one.
After some algebra, this criterion translates to the following
one:

3 roots if h2~g!<h<h1~g!,
~15!

1 root otherwise,

where

h6~g![H 13 S g21
1

9D 6
1

3
A1

3 S 132g2D 3J 1/2. ~16!

Summarizing, we have two cases. First, forg>1/A3 and
all h, we have just one flat-locked solution~the right-hand
curve in Fig. 2!. Second, forg,1/A3 ~the left-hand curve in
Fig. 2! we have three branches of solutions: there are three
solutions forh lying betweenh2(g) and h1(g) and only
one solution ifh does not fall into this interval. The first
~lowest! branch satisfies

0,uc0u2<r2~g!;

the second~middle! branch is

r2~g!<uc0u2<r1~g!;

and the third, upper branch is given by

uc0u2>r1~g!.

Here

r6~g![
1

3
6
1

6
A123g2. ~17!

B. Stability of flat solutions

Next we proceed to the stability of the flat-locked solu-
tions. Takingc(x,t)5c(x)1dc(x,t), wherec(x) is a sta-
tionary solution of Eq.~4! and dc is a small perturbation,
and linearizing Eq.~4! aboutc(x) yields

J~yt1gy!5Hy.

Here y(x,t) is a two-component column comprising of the
real and imaginary parts of the perturbation

y~x,t !5SRedc

Imdc D
andH andJ are 232 matrices

J5S 0 21

1 0 D , ~18!

H5S 2]21122~3cR
21c I

2! 24cRc I

24cRc I 2]21122~3c I
21cR

2 !
D ,
~19!

where]5]/]x. Finally, cR(x) andc I(x) represent the real
and imaginary parts of the solutionc(x) whose stability is
examined. In the case at hand,cR andc I are the real and
imaginary parts of the flat-locked solutionc0, i.e.,
c05cR1 ic I .

Separating the time variable

y~x,t !5z~x!elt, ~20!

FIG. 1. CubicP(r0) for g2,1/3 andg2.1/3. From left to
right, g250.5, 0.35, and 0.01.

FIG. 2. Amplitude of the spatially homogeneous solution versus
h. Left-hand curve,g,1/A3; right-hand curve,g.1/A3.
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we arrive at the eigenvalue problem

Hz~x!5mJz~x!, ~21!

where

m5l1g. ~22!

In general,m andz(x) are complex. The solutionc(x) will
be stable if Eq.~21! does not have eigenvaluesm with the
real part greater thang.

In the case of the homogeneous solutionc(x)5c0, the
eigenvaluem and eigenvectorz(x) can be found explicitly.
Writing z(x)5z0e

2 ikx, we obtain a matrix eigenvalue prob-
lem

~Hk2mJ!z050, ~23!

where

Hk5S k21122~3cR
21c I

2! 24cRc I

24cRc I k21122~3c I
21cR

2 !
D ,

with cR5Rec0 andc I5Imc0. Equating the determinant of
(Hk2mJ) to zero, we finally arrive at

2m25~k21122uc0u2!~k21126uc0u2!. ~24!

If uc0u2<1/6, there are nok’s such that

F~k2!5~2uc0u2212k2!~6uc0u2212k2!

is negative and so Rem is always zero and the flat solution is
stable. Let us now assume thatuc0u2.1/6. Here we have
to differentiate between two cases. First, ifuc0u2.1/4,
the minimum of the parabola F(k2) occurs at
k254uc0u221.0 and is equal toFmin524uc0u4. The cor-
responding Rem is maximum and equals 2uc0u2. Conse-
quently, the peturbationdc will grow in this case if
2uc0u2.g. ~This is the case of the modulation instability.!

Second, if 1/6,uc0u2,1/4, the minimum ofF(k2) occurs
at k250. In this caseFmin5(2uc0u221)(6uc0u221) and the
perturbation will grow if

2~2uc0u221!~6uc0u221!.g2. ~25!

This is an instability with respect to spatially homogeneous
perturbations. The inequality~25! amounts to

r2~g!,uc0u2,r1~g!,

with r6 as in Eq.~17!. Notice that sincer2(g),1/4 only if
g,1/2, this type of instability may occur only in the region
g,1/2.

C. Summary of flat solutions

Summarizing, we have three typical situations.
(a) 0,g,1/2. This situation is presented in Fig. 3~a!. We

have three branches of flat solutions. The whole of the lowest
branch is stable.@Here uc0u2,r2(g) and h,h1(g).# The
whole of the upper branch as well as the upper part of the
middle branch aboveuc0u251/4 are modulationally unstable.
Finally, the lower part of the middle branch

r2(g),uc0u2,1/4 is unstable with respect to flat perturba-
tions.

(b) 1/2,g,1/) . This situation is shown in Fig. 3~b!.
Similarly to the caseg,1/2, we have three branches here.
However, only a part of the lower branch, namely,
uc0u2,g/2, is stable. The rest of it as well as the other two

FIG. 3. Flat-locked solutions and their stability.~a! g,1/2, ~b!
1/2,g,1/A3, and ~c! g.1/A3. Solid line, stable; long-dashed
line, unstable against spatially inhomogeneous perturbations; short-
dashed line, unstable against spatially homogeneous perturbations.
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branches, are modulationally unstable. In terms ofh andg,
the inequalityuc0u2,g/2 translates intoh,h* (g), where

h* ~g![Ag32g21g/2. ~26!

(c) g.1/). This situation is depicted in Fig. 3~c!. There
is just one branch that is stable foruc0u2,g/2 @i.e., for
h,h* (g)# and modulationally unstable otherwise.

Finally, our (h,g) plane is decomposed into two infinite
regions; see Fig. 4. A stable homogeneous solution exists in
the blank region; the domain of instability has been shaded.
The boundary between the two regions is given by

h~g!5H h1~g!, g<1/2

h* ~g!, g>1/2.
~27!

III. SOLITONS

A. Asymptotic behavior

Another type of insight provided by the analysis of the flat
solutions is into the asymptotic behavior ofspatially local-
izedsolutions. Indeed, ifc(x) is a static solution approach-
ing asymptotically the value c0, then denoting
dc5c(x)2c0 we find that

y~x!5SRedc

Imdc D
satisfies

Hy~x!5gJy~x!, ~28!

with J andH as in ~18! and ~19!. Writing y(x)5e2 ikx, we
obtain

~k21122uc0u2!~k21126uc0u2!52g2. ~29!

This equation has two rootsk1
2 and k2

2. Consequently, the
general solution of Eq.~28! is a sum of four exponentials
e6 ik1x and e6 ik2x. If both k1 and k2 are real for certain
uc0u, y(x) is not localized and so Eq.~4! cannot have local-

ized solution in the corresponding region. Bothk1
2 andk2

2 are
positive if the following three conditions are satisfied simul-
taneously:~i! The discriminant of~29! is positive

uc0u2.
g

2
, ~30!

~ii ! the product of two roots is positive

~2uc0u221!~6uc0u221!1g2.0, ~31!

and ~iii ! the sum of two roots is positive

8uc0u222.0. ~32!

Again, we have to consider several cases.
If g.1/A3, the condition~30! is stronger than~32!, while

~31! is satisfied for alluc0u. This means that the condition for
the solitons nonexistence is simplyuc0u2.g/2 or, in terms of
h andg, h.h* (g), whereh* is as in Eq.~26!.

If 1/2,g,1/A3, the inequality~30! is still stronger than
~32!, while Eq. ~31! amounts to

uc0u2P~0,r2!ø~r1 ,`!. ~33!

Taking the intersection of~33! and ~30!, one gets

uc0u2PS g

2
,r2Dø~r1 ,`!,

wherer65r6(g) are as in Eq.~17!.
Finally, when g,1/2, Eq. ~32! is stronger than~30!,

while r2 is smaller than 1/4. Thus the intersection of~33!
and ~32! is simply

uc0u2.r1~g!.

These conclusions are summarized in Figs. 5 and 6. In
Fig. 5, dashed is the region where the solitons’ existence is
excluded by the above asymptotic reasoning. In principle,
solitons could have existed forc0 on the middle branch@i.e.,

FIG. 4. Regions of stability~blank! and instability~shaded! of
the flat-locked solution on the (h,g) plane.

FIG. 5. Asymptotic valueuc0u2 versus the damping coefficient
g. The shaded region is where no solitons can exist due to the
asymptotic exclusion principle.
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between the curvesuc0u25r2(g) and uc0u25r1(g) in Fig.
5#. In this case one pair of exponentsk1,2 is imaginary and
the other one (k3,4) is real. However, no solitons with as-

ymptotic values on the middle branch were found~see Sec.
III D !. As we will show below, solitons exist only below the
line

uc0u25H r2~g!, g<1/2

g/2, g>1/2.

Consequently, the soliton’s existence region lies on the low-
est branch ofuc0u @see Figs. 6~a!–6~c!#.

Our final remark in this subsection is on the way the soli-
ton approaches its asymptotic value. Here our interest is mo-
tivated by indications that solitons with undulations on their
spatial ‘‘tails’’ can form bound states@18#. For uc0u2,g/2,
the exponentsk1 and k2 are a pair of complex-conjugate
values with nonzero real part. Consequently, each of the four
exponentials undergoes undulations. On the other hand,
wheng,1/2 there is a region on the (uc0u2,g! plane where
both k1

2 and k2
2 are negative. This region is defined by the

intersection of Eq.~31! and the inequalityuc0u2,1/4; it is
not difficult to realize that the intersection is

g

2
,uc0u2,r2~g!. ~34!

In this region solitons approach their asymptotic values
monotonically; according to@18#, no bound states of solitons
may emerge under such circumstances. This region pertains
to the lowest branch of the flat-locked solutions. In terms of
h andg, Eq. ~34! can be rewritten as

h* ~g!,h,h1~g! S g <
1

2D . ~35!

B. Numerical solutions: Method

For g50, the equation

cxx2c12ucu2c52 igc2h ~36!

admits a pair of exact soliton solutions@14#

c6~x!5c0S 11
2sinh2a

16cosha cosh~Ax! D . ~37!

Herea is defined by

h5
A2cosh2a

~112cosh2a!3/2
; ~38!

h(a) being a monotonically decreasing function,a is
uniquely determined byh. Next,c0 is the asymptotic value
of bothc2 andc1 solitons:

c6~x!→c0 as uxu→`;

c0 is real and positive:

c05
1

A2~112cosh2a!
. ~39!

Finally, A has the meaning of ‘‘half the area’’ ofc1 and
c2 and is equal to

FIG. 6. Asymptotic value of the solitonuc0u2 versus the driver’s
strengthh. Dashed lines, no solitons are possible with such a
uc0u2; solid lines, solitons with these asymptotic values are not ex-
cluded by the asymptotic reasoning.~a! g,1/2, ~b!
1/2,g,1/A3, and~c! g.1/A3.
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A52c0 sinha5
1

2 E ~c6
2 2c0

2!dx5
sinha

A112cosh2a
.

~40!

Solutionsc1(x) and c2(x) are plotted in Fig. 7. The
domain of existence of both of these extends froma50 to
a5` or, in terms of the driver’s strength, fromh50 to
h5A2/27'0.2722.

For g.0, no exact solutions are available. We therefore
had to obtain solitons numerically. Our numerical scheme
was based on the continuous analog of Newton’s method
~see@19# for review and references!.

The finite difference version of Eq.~36!, together with the
discretized version of the open-end boundary conditions
cx~6L/2!50, can be written in the form

G~c!50, ~41!

wherec5(c0,c1,...,cN11) is the discretized solution, with
cn5c(xn), xn52L/21nDx, Dx5L/(N11), and G
5(G0,G1,...,GN11) is a nonlinear operator defined by

Gn5
cn111cn2122cn

~Dx!2
2cn12ucnu2cn1 igcn1h,

for n51,2,...,N, and

G05
23c014c12c2

2Dx
,

GN115
cN2124cN13cN11

2Dx
.

~Notice that we use a second-order finite difference approxi-
mation both forcxx andcx.)

The idea of the continuous analog of Newton’s method is
to introduce an auxiliary ‘‘evolution’’ parametert in such a
way thatc satisfies the differential equation

d

dt
G„c ~t!…1G„c ~t!…50, ~42!

with the initial condition

c ~0!5c ~0!. ~43!

Herec (0) is an initial guess for the soliton solution. Since
G„c (t)…→0 ast→`, c (`) satisfies Eq.~41!. Our iteration
algorithm is based on the discretization of Eq.~42! with re-
spect tot :

c ~a11!5c ~a!2Dt~a11!S ]G

]cD
c5c~a!

21

G~c ~a!!, ~44!

wherea50,1,2, . . . andDt (a11)5t (a11)2t (a) is chosen
so as to minimize the residual

d~a!5 max
1<n<N

$uReGn~c ~a!!u,uImGn~c ~a!!u%. ~45!

~For details see@19#.!
Our continuation strategy was as follows. First, we used

the exact solutions~37! as an initial approximation for
g50.02 andh in the middle of the interval (0,A2/27), i.e.,
for h50.136. Second, we utilized the obtained numerical
solutions as initial approximations for the sameg50.02 and
h above and below 0.136. We advanced along theh axis
until the Newtonian iterations ceased to converge. The ab-
sence of convergence may be caused by a bad initial approxi-
mation; for this reason we had to decrease the increment
Dh in the neighborhood of the boundaries of the domain of
existence. As a result, we were able to establish both the
upper and the lower boundaries with the desired accuracy;
see below. Next, taking the numerical solutions at approxi-
mately the middle of the domain of existence forg50.02,
we employed them as initial approximations for the sameh
with g50.04, then advanced up and down inh, and the
process repeated.

The bulk of calculations was performed on an interval
(2L/2,L/2)5(230,30), with the exception of the neighbor-
hood of the upper boundary of the domain of existence,
where the solitons decay very slowly inx. In this neighbor-
hood the interval lengthL was increased appropriately. Ge-
nerically, we utilized the second-order Newtonian algorithm
with the grid spacingDx50.1; the neighborhood of the up-
per boundary was again an exception~see Sec. IIID!.

Similarly to the case wheng50, in the case of nonzero
dissipation solitons generically come in pairs. By analogy
with theg50 case, we denote themc1(x) andc2(x). Fig-
ure 8 shows their profiles for several typicalh. Here we have
chosen values ofh not very close to the lower boundary; the
behavior of solutions in the neighborhood of the lower
boundary can be quite peculiar~see Fig. 10 below!.

C. Existence domain: Lower boundary

The value ofh demarcating the lower boundary is usually
referred to as thethresholddriving strength: for a giveng,
no localized solutions are possible forh,hthr . Kaup and

FIG. 7. c1 andc2 solitons in the undamped caseg50. These
solutions are given by explicit formulas, Eqs.~37!. The behavior of
c6(x) is qualitatively similar for all h; in this plot a51
(h50.243).
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Newell have found@1#, by means of the inverse scattering-
based perturbation theory, the following estimate for the
threshold value:

hthr5
2

p
g. ~46!

Spatscheket al. @11# and Terroneset al. @15# reproduced Eq.
~46! by expandingc2(x) in a perturbation series in powers
of smallh andg.

The threshold value that we have found numerically is
plotted in Fig. 13 at the end of this section. For comparison,
we have also plotted the straight lineh5(2/p)g in the same
picture. Surprisingly, the deviation of the actualhthr from
(2/p)g is extremely small even for not very smallg. For
example, forg50.48 we have

hthr
g

2
2

p
51023; ~47!

for g,0.48 the above difference is even smaller. However,
asg grows beyondg'0.5, the actualhthr gradually deviates
from (2/p)g.

For h5hthr the two branches of localized solutions
c1(x) andc2(x) merge. The pointh5hthr is a turning point
therefore. We illustrate this fact by plottinguc(0)u2, the
modulus squared of the value ofc6(x) in the middle of the
interval, as a function ofh ~Fig. 9!.

It is interesting to follow the evolution ofc1 and c2

when h approaches the threshold value from above. The
transformation ofc1 into c2 is illustrated in Fig. 10.

D. Existence domain: Upper boundary

Let us now turn to theupper boundary of the existence
domain. The upper boundary is different forc1 and c2

solitons and depends ong. Three typical regions can be iden-
tified as follows.

(a) 0<g<1/2. Here we have three branches of flat solu-
tionsc0 @Fig. 3~a!#; the lowest branch is stable and the other

FIG. 8. Real and imaginary parts of thec1 andc2 solitons in the regiong,1/2. Hereg50.2; the valueh50.130 is close to the lower
boundary of the existence domain (hthr50.127), but not exceedingly so. The pointsh50.28 and 0.284 represent solutions in the neighbor-
hood of the upper boundary (h150.2845).
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two branches are unstable. All numerically found solitons
c1 andc2 have their asymptotic values lying on the lowest
branch. It is natural to assume that the upper boundary of the
domain of existence of thec1 and c2 coincides with the
point h5h1(g), uc0u25r2(g), which separates the lowest
branch ofuc0u2 from the adjacent branch. We have verified
this hypothesis numerically.

Our strategy was to find the solitonsc1 and c2 with
the asymptotic valueuc0u2 as close tor2 as possible. As
a closest asymptotic value we adoptedr̃(g)
5r2(g)21.031023 and examined an equidistant set of
g ’s between 0 and 1/2 (g50.02,0.04,0.06, . . . ,0.48). For all
theseg we were able to find bothc1 andc2 solitons with
the asymptotic valueuc0u25 r̃(g). Consequently, we can as-
sert that the upper boundary of the existence domain~ex-
pressed in terms ofuc0u2) is not farther away than 1023 from
the valueuc0u25r2(g). In terms ofh, the proximity is even
closer. Deviatinguc0u2 from r2 by D(uc0u2)51023 results
in the deviationDh in h; this deviation can be easily found
by means of the explicit formula Eq.~13!:

h5A4uc0u624uc0u41~11g2!uc0u2. ~48!

For g,1/2 the above deviation is;1026. ~More precisely,
asg is increased fromg50.02 throughg50.48, the devia-
tion Dh decreases fromDh53.731026 through Dh
51.631026.! The smallness ofDh is explained, of course,
by the fact that the derivativedh/duc0u2 goes to zero as
uc0u2→r2 .

Parameters of our numerical scheme were chosen consis-
tently with the smallness of the incrementsDh. In order to be
able to approach the valueh5h1 as close as the distance
Dh;1026, we had to require the residual~45! to be not
larger thand (a)51027. Here we took the second-order New-
tonian algorithm withDx51023, i.e., the truncation error
was of order (Dx)251026.

Since we were looking forevensolutions, it was sufficient
to solve Eq.~36! on a half interval (0,L/2) with the boundary
conditions cx(0)5cx(L/2)50. When x→`, the solitons
decay to the valuec0 exponentially, as exp(2uImkux), where
k is given by Eq.~29!. Wheng grows from 0.02 to 0.48, the
exponentuImku corresponding touc0u25 r̃ grows from 0.07
to 0.2. Consequently, choosing the half-interval length
L/25300 we ensured thatuc6(L/2)2c0u would not exceed
1029.

Thus our numerical study shows that in the region
0,g,1/2 the upper boundary of the existence domain~for
both c1 andc2 solitons! is given by uc0u25r2(g) or, in
terms of the driver’s strength, byh5h1(g). As we approach
the knee of the hysteresis curveuc0u25uc0u2(h), i.e., as
uc0u2→r2 , the solitonc1(x) flattens out so that when
h5h1(g), the c1(x) merges with the flat solution:
c1(x)5c0. @See Figs. 8~a! and 8~b!.# This is in agreement
with the asymptotic analysis presented in Sec. III C, where
we have shown that ash→h1(g) and uc0u→r2(g), the
decay exponentsk1,2,3,4→0.

The second solutionc2(x) does not flatten out as we
approach the hysteresis knee, although the decay exponents
do go to zero. The solutionc2 remains localized@Figs. 8~c!
and 8~d!#, but the decay becomespolynomialnot exponen-
tial. In the undamped caseg50, this can be demonstrated
explicitly. Sendinga→0 (h→A2/27) in Eq.~37! yields

c2~x!→
1

A6
x2227/2

x219/2
.

(b) 1/2,g,1/)'0.5774. In this region the curve
uc0u25uc0u2(h) is similar to case~a!; there are three
branches. However, the flat solution loses its stability not at
the knee point but earlier, atuc0u25g/2 @Fig. 3~b!#. On the
other hand, we know from the discussion in Sec. IIIA that
there can be no solitons withuc0u2 on the lowest branch
aboveuc0u25g/2. Consequently, it is natural to assume that
the upper boundary of the soliton’s existence domain, for
bothc1 andc2 , corresponds touc0u25g/2. We examined
this hypothesis using the same criterion as in the region
g,1/2. Surprisingly, the results forc1 andc2 turned out to
be different.

We examinedg50.52, 0.54, and 0.56. For all theseg ’s
we were able to find thec1 soliton at the distance
D(uc0u2)51.031023 away from the valueuc0u25g/2, i.e.,
for uc0u25(g/2)21.031023. Thec1 solution is shown in
Fig. 11.

As far asc2 is concerned, the upper boundary of its
domain of existence was seen to deviate substantially from
g/2. Namely, forg50.52 we were unable to find thec2

soliton for uc0u2 closer than 631023 to g/2; for g50.54 and
0.56 this gap was 831023 and 1131023, respectively.~See
Table I.! Here the parameters of the numerical scheme were
Dx51023, d (a)51027, andL/25600. We do not plot the
c2 solitons as they look qualitatively similar to those arising
in the regiong,1/2.

(c) g.1/). In this region there is only one branch of flat
solutions for eachh. Similarly to case~b!, the flat solution
becomes unstable foruc0u2.g/2 and similarly to that case,
there can be no solitons in the regionuc0u2.g/2. Our nu-

FIG. 9. Modulus squared of thec6 solitons in the middle of the
interval x50 ~solid line!. Lower branch,uc1(0)u2; upper branch,
uc2(0)u2; the two branches merge at the turning point
hthr50.191 03. Also shown is the flat solutionuc0u2 ~dashed line!.
The branchuc1(0)u2 merges withuc0u2 at h150.300 23. In this
plot g50.3.
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merical results in this region are also similar to case~b!. The
c1 soliton exists for values ofuc0u2 up to and including
(g/2)21023. On the other hand, the upper boundary of the
existence domain for thec2 soliton was seen to be lower
than ~g/2!21023 ~see Table I!. Figure 12 gives the profiles
of the c1 andc2 solitons in the regiong.1/A3. The nu-
merical parameters in the vicinity of the upper boundary
wereDx51023, d (a)51027, andL/25600.

E. Soliton existence region: Summary

Our conclusions are summarized in Fig. 13. The upper
dashed line is given by Eq.~27! and demarcates the upper
boundary of the domain of existence of thec1 soliton. The
upper solid line shows the upper boundary for thec2 soli-
ton’s domain of existence. Forg,1/2 this boundary is given
by the same equation~27!, whereas forg.1/2 it deviates
from Eq. ~27!. This deviation is, however, quite small
(Dh;102521024) and not visible in the plot.

The lower dashed line is a straight lineh5(2/p)g; it
yields an approximation for the lower boundary of the do-

main of existence. The actual lower boundaryhthr ~which is
the same for bothc1 andc2 solitons! is shown by the lower
solid line. Again, the dashed and solid lines are graphically
indistinguishable.

Finally, the middle solid line is the stability boundary of
thec2 soliton. It will be discussed below~Sec. IVB!.

IV. STABILITY OF SOLITONS

A. Spectrum structure

To analyze the stability of thec1 and c2 solitons, we
numerically solved the eigenvalue problem~21! with H as in
Eq. ~19!, with cR(x),c I(x) being the real and imaginary
parts of the corresponding soliton solution~found numeri-
cally beforehand!. The solution is considered stable if
Rem,g for all eigenvaluesm.

Continuous spectrum.Before proceeding to results of the
computation, we need to describe the spectrum structure of
the operatorJ21H. When uxu→`, the solitonsc6(x) ap-
proach the valuec0, Eq. ~21! reduces to a matrix eigenvalue
problem~23!, and the eigenvaluem and wave numberk are

FIG. 10. Transformation of thec6 solitons ash approacheshthr , the lower boundary of their domain of existence. Long-dashed line,
h50.28; solid line,h50.26; short-dashed line,h5hthr50.2548. Forh50.2548,c1 andc2 become indistinguishable. Notice a change of
scale in~b! compared to~a!.
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related by the dispersion formula~24!. The number of real
roots k1 ,k2 , . . . of Eq. ~24! determines the multiplicity of
the continuous spectrum.

When uc0u2,1/6, the continuous spectrum occupies the
whole imaginary axis of m outside the gap
2v0,Imm,v0, where

v05A~2uc0u221!~6uc0u221!. ~49!

When uc0u2.1/6, the continuous spectrum fills in the entire
imaginary axis and the region2n<Rem<n on the real axis.
Here

FIG. 11.c1 soliton in the second region (1/2,g,1/A3). In this plotg50.52. The transformation ofc1 is shown ash is increased from
hthr50.3319 throughh50.360 840, which is close to the upper boundary of the existence domainh*50.360 843.
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FIG. 12. Solitons in the third region (g.1/A3). ~a!–~c! c1 soliton in the neighborhood of the upper boundary of the existence domain.
In these plotsg50.60 andh50.394 92.~The upper boundary ish*50.394 97.! ~d!–~f! c2 soliton forg50.66. Solid line, solution at the
thresholdh5hthr50.424 25; dashed line, soliton near the upper boundary,h50.4251. For thisg the value ofh* is 0.4265; however, no
c2 solitons withh.0.4259 were found.
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n5HA~122uc0u2!~6uc0u221!, uc0u2,1/4

2uc0u2, uc0u2.1/4.

Discrete eigenvaluescan be complex and real. Ifm is an
eigenvalue with the eigenfunctionz(x), its complex conju-
gatem* is also an eigenvalue with eigenfunctionz* (x). This
follows simply from the fact thatH is an operator with real
coefficients. A less trivial observation is that (2m* ) will be
an eigenvalue as well; the proof of the latter is relegated to
the Appendix.

Thus real eigenvalues ofJ21H will always appear in pairs
m and2m; complex eigenvalues will occur in quadruplets:
m, 2m, m* , and2m* . For any values ofh and g, the

operatorJ21H has two discrete eigenvalues:g and 2g.
~This is true for bothc2 andc1 solitons.! The eigenvalue
m5g results from the translational invariance. The corre-
sponding exponentl in Eq. ~20! is equal to zero; the corre-
sponding eigenfunctionz(x) is given by

z~x!5
d

dx SRec6~x!

Imc6~x!
D .

The negative eigenvaluem52g arises due to the symmetry
m→2m discussed above.

B. Numerical solution of the eigenvalue problem

We define a grid with spacingDx5L/(N11):

xn52
L

2
1nDx, n51,2, . . . ,N,

with x052L/2 andxN115L/2, and introduce realf n, gn:

dc~xn,t !5~ f n1 ign!e
~m2g!t.

Approximating the derivatives by second-order finite differ-
ences, we reduce the differential eigenvalue problem~21! to
a matrix eigenvalue problem of the form

Hz5mJz. ~50!

Herez is a 2N-component vector

z5S f 1

A

f N

g1

A

gN

D
andH andJ are (2N32N) block matrices

H5S 2D21u w

w 2D21v D ,
J5S 0 2I

I 0 D .
The entries of theN3N blocksu, v, w, andI are given by

umn5$122~3cR
21c I

2!ux5xn
%dmn ,

vmn5$122~3c I
21cR

2 !ux5xn
%dmn ,

wmn524cRc I ux5xn
dmn ,

I mn5dmn , m,n51,2, . . . ,N. ~51!

FIG. 13. Existence and stability chart for the soliton solutions of
the externally driven, damped NLS. The upper and lower solid lines
show the upper and lower boundaries of the solitons’ existence
domain. The middle solid line is the line of the Hopf bifurcation;
above this line the solitonc2 is unstable. The upper dashed line is
given by Eq.~27! and demarcates the boundary of stability of the
flat-locked solution; the lower dashed line is the straight line
h5(2/p)g. Below g;0.66, these dashed lines are graphically in-
distinguishable from the soliton’s existence boundaries. Theydo
not completely coincide, however~see the text!.

TABLE I. Numerically calculated upper boundary of the exist-
ence domain for thec2 soliton. Herer1 denotes the value of
uc0u2 for which thec2 soliton still exists;h1 is the corresponding
h: h15h(r1). Next,r2 is the lowest value ofuc0u2 for which New-
tonian iterations did not converge and we were unable to find the
c2 soliton.h2 is the correspondingh: h25h(r2). The actual upper
boundary lies somewhere betweenh1 andh2.

g g/2 r1 r2 h1 h2

0.52 0.26 0.254 0.255 0.360 79 0.360 80
0.54 0.27 0.262 0.263 0.368 46 0.368 48
0.56 0.28 0.269 0.270 0.376 53 0.376 57
0.60 0.30 0.298 0.299 0.394 88 0.394 92
0.64 0.32 0.307 0.308 0.414 12 0.414 21
0.66 0.33 0.324 0.325 0.425 85 0.425 86
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Finally,D2 is anN3N matrix arising from the discretization
of the second derivative

2D25
1

~Dx!2

3S 2 21 0 0 0 ••• 0

21 2 21 0 0 ••• 0

0 21 2 21 0 ••• 0

�

0 ••• 0 21 2 21 0

0 ••• 0 0 21 2 21

0 ••• 0 0 0 21 2

D .

~52!

Since we are interested indiscreteeigenvalues, we im-
posed the Dirichlet boundary conditions,dc(6L/2)50,
which translate into

f 05 f N115g05gN1150. ~53!

Equations~53! have been taken into account in deriving Eq.
~52!.

Having fixedg, we increasedh from hthr to h5h1(g);
results turned out to be qualitatively similar for allg&0.3.
Let us start with thec2 solution.

As we have already mentioned, there always is an eigen-
valuem05g ~or, equivalently, there always is an exponent
l050) corresponding to the translational symmetry. When
h5hthr , we have a turning point and, consequently, there is
one morezero exponentl150. That is, ath5hthr we have
two pairs of discrete eigenvalues: the translational eigen-
valuem05g and its negativem̃052g ~we shall disregard
these two eigenvalues in what follows!, and the turning point
eigenvaluem15g and its negativem̃152g.

As we increaseh, the eigenvaluesm1 and2m1 approach
each other along the real axis, and coalesce at the origin.
Then m1 passes on to the positive imaginary axis, and
2m1 to the negative imaginary axis, and the separation be-
tween them increases. Ash is increased further, another pair
of pure imaginary eigenvaluesm2 and2m2 detaches from
the continuum.~We recall that the continuous spectrum oc-
cupies the imaginary axis outside the gap
2v0,Imm,v0.! Subsequently,m1 coalesces withm2,
2m1 with 2m2, and all four eigenvalues move away from
the imaginary axis. We end up with a quadrupletm, m* ,
2m, and2m* .

On further increasingh, the real part ofm andm* grows
and, at a certainh5hHopf , becomes equal tog. This is a
point of the Hopf bifurcation; forh.hHopf , the solitonc2 is
unstable.

The above scenario is almost coincident with the scenario
described in@15#; there is just one distinction. Terroneset al.
observed what they called the stability windows: after the
first Hopf bifurcation, the pair of complex-conjugate eigen-
valuesm and m* crossed back into the stable half plane
Rem,g and then returned to the unstable region Rem.g

again. On the contrary, no stability windows were observed
in our calculations.~This contradiction is to be rectified be-
low.! After the pair of complex-conjugate eigenvalues have
crossed into the unstable half plane, their real parts were
monotonically growing.

Curiously enough, ash approaches the upper boundary of
the domain of existence (h→h1) the limit value of Rem is
almost independent ofg. More precisely, ash→h1(g), the
real part ofm tends to approximately 0.3. This observation
provides a simple estimate for the value ofg above which no
Hopf bifurcations may occur. Indeed, forg.0.3, Rem can-
not exceedg and so thec2 soliton is stable for allh ~see the
stability chart Fig. 13!.

Now we turn to thec1 soliton. As we have already men-
tioned, at h5hthr ~the turning point wherec1 and c2

merge! there is a nontranslational eigenvaluem5g. ~There is
also its negative partnerm̃52g, but we are concentrating on
the positive eigenvalue.! As h is increased, this real eigen-
value grows beyondg, reaches a maximum, and then starts
decreasing. This evolution is accompanied by the restructur-
ing of the continuous spectrum. Asuc0u2 grows beyond
1/6, the gap2v0,Imm,v0 in the continuous spectrum
closes. Now the continuous spectrum fills in the entire imagi-
nary axis and, on the top of this, the region2n,Rem,n on
the real axis. The valuen is smaller thang but grows ash is
increased. Finally, whenh reaches the upper boundary of the
domain of existence@h1(g) for g,1/2 and h* (g) for
g.1/2, respectively#, n reachesg. This is a point of bifur-
cation where the solitonc1 merges with the flat solution.
Accordingly, at thish the real eigenvaluem reachesg from
above and immerses into the continuous spectrum.

C. Stability windows

It is important to trace the origin of the contradiction be-
tween our results and conclusions of Ref.@15#, in particular
to clarify the issue of stability windows. We shall demon-
strate that the contradiction stems simply from the fact that
Terroneset al. consider much shorter intervalsL.

Terroneset al. impose periodic boundary conditions on
perturbationsdc(x),

dc~2L/2!5dc~L/2!, dcx~2L/2!5dcx~L/2!, ~54!

whereas in Sec. IVB we worked with the Dirichlet condi-
tions

dc~6L/2!50. ~55!

In order to eliminate a possible effect of the boundary con-
ditions, we have now replaced our vanishing conditions~55!
by the periodic conditions~54!. In terms of the discretized
eigenfunctions, this amounts to replacing Eqs.~53! by

f 05 f N , f N115 f 1 , g05gN , gN115g1 . ~56!
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The only consequence of this substitution is that the matrix
2D2 @Eq. ~52!# is replaced by

2D̃25
1

~Dx!2

3S 2 21 0 0 0 ••• 0 21

21 2 21 0 0 ••• 0 0

0 21 2 21 0 ••• 0 0

�

0 0 ••• 0 21 2 21 0

0 0 ••• 0 0 21 2 21

21 0 ••• 0 0 0 21 2

D .

~57!

The D2 and D̃2 are only different in their lower left and
upper right corner entries.

In Eqs. ~51!, c25cR1 ic I satisfies its standard ‘‘open
end’’ boundary conditionscx(6L/2)50. Sincec2(x) is an
even function, these boundary conditions are equivalent to
periodic conditions c(2L/2)5c(L/2), cx(2L/2)
5cx(L/2). Thus we examine the stability of exactly the
same solution as Terroneset al.

Those authors report the occurrence of the stability win-
dows for the following two sets of the sine-Gordon param-
eters:LSG524, a50.04,~a! v50.87, and~b! v50.90. Us-
ing Eqs.~7!–~9!, one gets the corresponding NLS values

~a! LNLS512.2376, g50.1538, h5
G

0.5303
;

~b! LNLS510.7331, g50.2000, h5
G

0.3578
.

~Here G and h are the sine-Gordon and NLS driving
strengths, respectively.!

We have calculated the eigenvaluesm for the first set of
control parameters, i.e., we tookL512.2376, fixed
g50.1538, and variedh. The growth rate Rel5Rem2g is
plotted in Fig. 14~a! ~solid line!. Clearly seen is the region
where Rel,0, the stability window. The values ofh at
which the solution restabilizes exactly correspond to those
given in Ref.@15#.

It is appropriate to emphasize here that although we have
analyzed exactly the same eigenvalue problem as Terrones
et al., their numerical approach was totally different. Those
authors worked with the~truncated! Fourier expansion, while
we use the finite-difference approximation. Consequently,
the exact correspondence of our results with results of@15#
rules out any chance of numerical error.

We next increased the length of the integration interval
~from L512.238 toL515) keepingg fixed. Surprisingly,
this minor change resulted in that the stability window has
closed@the short-dashed curve in Fig. 14~a!#. On further in-
creasingL, the stability interval did not reappear.@The long-
dashed line in Fig. 14~a! shows the growth rate forL560.#

For the sake of comparison we repeated the calculation
for the same values ofL andg, but with the Dirichlet bound-

ary conditions on eigenfunctions Eq.~55!. Similarly to the
periodic case, the curve Rel(h) changes substantially asL is
increased from 12.238 to 15, but on further increases, results
settle down@see Fig. 14~b!#. For sufficiently large intervals
(L560 in our case! discrete eigenvalues are insensitive to
the type of the boundary conditions.

Concluding, we may claim that stability windows may
occur only for sufficiently small interval lengths. This phe-
nomenon is apparently of the same origin as the stabilization
of the upper branch of the flat solution when the interval is
made sufficiently short@15#. The instability is caused by
long-wavelength perturbations that cannot arise on short in-
tervals.

V. CONCLUDING REMARKS AND OPEN PROBLEMS

The principal result of this study is the chart of phase-
locked attractors on the (h,g) plane @Fig. 13#. This chart

FIG. 14. Maximum growth rate Rel (5Rem2g) as a function
of h for g50.1538. Solid line,L512.238; short-dashed line,
L515; long-dashed line,L560. ~a! Periodic boundary conditions
for eigenfunctions;~b! vanishing boundary conditions. The horizon-
tal straight-line portions of the curves~where Rel52g) corre-
spond to pure imaginary eigenvaluesm. For h&0.12 all three
curves practically coincide.
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comprises the existence and stability domains of the spatially
homogeneous solution and two coexisting solitonsc1 and
c2 . While c1 is unstable for allh andg, stability proper-
ties of c2 depend on whetherg is greater or smaller than
gcr , wheregcr'0.3. Wheng.gcr , thec2 soliton is stable
for all h; when g,gcr , the increasing ofh results inc2

losing its stability via a Hopf bifurcation.
The classification of the phase-locked attractors on the

(h,g) plane is the first step towards the construction of the
completeattractor chart. Our next step will be to study non-
linear structures in the region where thec2 soliton is un-
stable, i.e., above the Hopf bifurcation curve. Here some
guidance can be gained from the analysis of a twin problem,
namely, theparametricallydriven NLS equation@16#. Figure
15 displays the existence and stability chart for the para-
metrically driven damped soliton; it bears a striking similar-
ity to our chart for the externally driven NLS~Fig. 13!. It is
therefore natural to expect that the structure of the attractor
chart above the Hopf bifurcatrion curve will also be similar.
Figure 16 is the complete chart of attractors for the para-
metrically driven case that we reproduce from Ref.@17#.
Seen are two lines of different types of transition to chaos,
period doubling and quasiperiodic, meeting at a ‘‘tricritical
point.’’ It is tempting to expect that the topography of attrac-
tors of the externally driven NLS equation will be qualita-
tively similar. Numerical simulations of Eq.~2! available for
severalg @6–12# do not contradict this hypothesis.

It is pertinent to emphasize two main distinctions of our
study from the work of Terroneset al. @15#. First, those au-
thors analyze solutions on afinite interval (2L/2,L/2) with

periodic boundary conditions, whereas the present article
deals withinfinite intervals. In their numerical calculations,
Terroneset al. focus on rather short intervalsL; 10–15, for
which the effect of the boundaries cannot be neglected. Ac-
cordingly, some properties of theirperiodic solutionsdiffer
substantially from properties ofsolitonsreported in this pa-
per. In particular, as we have observed forg50.1538, it is
sufficient to increase the interval length fromL;12 to 15 to
see the stability window of thec2 solution closing.

Second, the aim of Ref.@15# was to give a theoretical
explanation for results of the available numerical simula-
tions; accordingly, the authors of@15# restricted their atten-
tion to several specific values ofg. On the contrary, our
objective here is to provide a global view: to chart the whole
(h,g) plane according to habitats of various flat and solitonic
attractors.

As we mentioned on several occassions, there are three
characteristic regions of the dissipation coefficient:g,1/2,
1/2,g,1/A3, and g.1/A3. The existence and stability
properties of flat and solitonic solutions depend on which
region we are in. Results of Ref.@15# are confined to the
regiong,1/2.

One may argue that in applications, the damping and driv-
ing are weak, so does it really make sense to consider large
values ofh andg? The answer is that, apart from their own
role in plasma, optics and other applications, the damped
driven NLS solitons describe small amplitude breathers of
the damped driven sine-Gordon equation~1!. The damping
and driving coefficients of the two equations are related by
Eq. ~7!:

g5
a

«2
, h5

G

4«3
, ~58!

where the detuning

«5A2~12v! ~59!

acts as a small parameter. Consequently, even if the sine-
Gordon dissipation coefficienta and driving strengthG are
small, their NLS counterparts may be quite large.

It is instructive to make a link to results ofdirect com-
puter simulations of the sine-Gordon and NLS equations
available in literature.

Nozaki and Bekki@6# simulated the NLS equation~2!
with g50.1 on a relatively large intervalL550 and found
that the soliton becomes unstable forh.0.11. This is in
perfect agreement with the valuehHopf50.11, which we have
obtained in the numerical solution of the eigenvalue problem
~Sec. IVB!.

In their computer experiments with the sine-Gordon~SG!
equation~1!, Bishop et al. @8# set a50.04, LSG524, and
produced an attractor chart on the (G,v) plane for
0<G<0.19 and 0.82<v<0.94. In terms of the NLS control
parameters, these simulations correspond to 0.11<g<0.33.

Eliminating « between~58! and ~59!, we have

v512
1

2

a

g
. ~60!

FIG. 15. Existence and stability chart for theparametrically
driven NLS equation~3! as from Ref.@16#. ~The driving frequency
V has been normalized to unity.! The structure of the chart is very
similar to Fig. 13. The lowest line is the lower boundary of the
soliton existence domain; in the parametric casehthr5g. The up-
permost curve is given byh5A11g2 and plays the role of the
upper boundary of the existence domain. Although the soliton does
exist above this line, it is unstable there, together with the zero
solution, against continuous spectrum excitations. Finally, the
middle line is the curve of the Hopf bifurcation; on crossing this
line the stationary soliton loses its stability to a temporally periodic
solution. The structure of the unstable domain~above the Hopf
bifurcation line! is shown in Fig. 16.
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Thus, for the fixed SG dampinga, the frequencyv is com-
pletely specified by the NLS dampingg; fixing v is equiva-
lent to fixingg. The SG forcingG is then proportional to the
NLS forcingh,

G54S a

g D 3/2h. ~61!

Assume that the NLS damping coefficientg is fixed and
forcing h varied. Figure 13 shows that the largerg is, the
smaller the range ofh for which the NLS soliton is unstable.
Translating to the sine-Gordon variables, Eqs.~60! and ~61!
imply that for fixeda andv there is an interval ofG ’s where
the breather is unstable; this interval should shrink asv is
increased. This was indeed observed in@8# for not very small
detunings«>0.45~that is, forv<0.9); see Fig. 1 in@8#. For
smaller detunings« ~largerv) results start to deviate. This
may be attributed to the fact that the NLS interval corre-
sponding to LSG524 becomes very short
(LNLS5«LSG,10.8).

Taki et al. @10# studied the sine-Gordon equation with
a50.004,LSG580, v50.98, and 0.0585<G<0.116. This
corresponds tog50.1 andLNLS516. For G50.0038, the
breather lost its stability via a Hopf bifurcation. The corre-
sponding h is equal to 0.12, which is close to our
hHopf50.11; the difference should be attributed to the small-
ness of the interval.

Spatscheket al. @11# simulated the NLS equation~2! on
an intervalL540 for a variety ofh andg (g,0.25). Their
experimental points fit very well into theg,0.25 portion of
our stability chart Fig. 13.

Finally, it has remained unclear what happens to the soli-
ton c2 as uc0u2→g/2 in the regiong.1/2. As we men-
tioned in Sec. IIID, we were unable to find the solution
c2 close enough to the valueuc0u25g/2; the Newtonian
iterations ceased to converge a certain finite distance away
from g/2. ~This is in a sharp contrast to the case of thec1

solitons, which turned out to exist arbitrarily close to the
value uc0u25g/2.! It would be interesting to understand
whether the upper boundary of the existence domain of the
c2 soliton is indeed different fromuc0u25g/2 or this is
simply a numerical effect caused by an anomalously small
radius of convergence of Newton’s method in the neighbor-
hood of the boundary.
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APPENDIX

The aim of this appendix is to show that ifm is a discrete
eigenvalue of the operatorJ21H @Eq. ~21!#, 2m* is an ei-
genvalue as well. To this end we define an auxiliary operator
Am ,

Am5H2mJ,

wherem is a complex parameter andJ is given by Eq.~18!.
If h is an eigenvalue ofAm ,

Amz~x!5hz~x!,

h* will be an eigenvalue of the Hermitian-conjugate opera-
tor Am

† where

Am
†5H2m* J†5H1m* J5A2m* .

~Notice that taking the Hermitian conjugate amounts to re-
placingm by2m* .! Assume now thatz0(x) is an eigenfunc-
tion of the operatorJ21H corresponding to the eigenvalue
m0:

Hz0~x!5m0Jz0~x!.

This z0(x) is, at the same time, an eigenfunction of the op-
eratorAm pertaining to the parameter valuem5m0 and ei-
genvalueh50:

Am0
z0~x!5~H2m0J!z0~x!50.

The conjugate operatorAm0

† (5A2m
0*
) will also have an ei-

genvalueh*50; this implies that2m0* is an eigenvalue of
J21H. Q.E.D.

There is one point in the above proof that requires a word
of caution. Ifh is an eigenvalue ofA, a non-Hermitian op-

erator in the Hilbert space, the conjugate operatorA† does
not, in general, have to have an eigenvalueh* . Consider, for
example, a shift operatorT defined on infinite sequences
x5(x1 ,x2 , . . . ):

T~x1 ,x2 ,x3 , . . . !5~x2 ,x3 ,x4 , . . . !. ~A1!

It is easy to see thath50 is an eigenvalue ofT, with an
eigenvector (1,0,0, . . . ). However, the conjugate operator
T† does not have a zero eigenvalue. This follows from the
fact that the kernel space ofT† ~i.e., the space of allx such
thatT†x50) is given byR(T)', the orthogonal complement
of the range ofT. Since the range of the shift operator~A2!
obviously coincides with the entire space,R(T)' consists
only of the zero element and soT† has no zero eigenvalues.

Fortunately, this situation does not arise for discrete ei-
genvalues of differential operators~whose eigenfunctions are
smooth and exponentially decaying at infinities!. The reason
is that these eigenvalues can be approximated by eigenvalues
of finite-dimensional matrices. For instance, one can ap-
proximate derivatives by finite differences~as we do in Sec.
IVB ! or use a truncated expansion over some complete set of
functions~which is the approach of Ref.@15#!. In any case,
sendingN→`, one of the eigenvalues of theN3N matrix
AN will approach the discrete eigenvalue of the differential
operatorA: hN→h. On the other hand, ifhN is an eigen-
value of the matrixAN , the Hermitian-conjugate matrixAN

†

will have an eigenvaluehN* . When N→`, the sequence
hN* converges to a discrete eigenvalue of the Hermitian-
conjugate operatorA†, which is therefore equal toh* .

Returning to the shift operator Eq.~A1!, notice that its
zero eigenvaluecannotbe approximated by a sequence of
finite-dimensional matrix eigenvalues. In particular, if we at-
tempt to use a finite-dimensional shift operator with periodic
boundary conditions

TN~x1 ,x2 , . . . ,xN!5~x2 ,x3 , . . . ,xN ,x1!,

we will immediately find that eigenvalues of the latter are
given by exp(2pin/N), n50,1, . . . ,N21. None of these tend
to zero asN→`.
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