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We study the externally driven damped nonlinear Sdimger equation on an infinite line. The existence and
stability chart for its soliton solution is constructed on the plane of two control parameters: the forcing
amplitudeh and the dissipation coefficient For generic values di andy there are two coexisting solitons,
one of which ¢,) is always unstable. The bifurcation diagram of the second solifor) (depends on the
dissipation coefficient: ify<y,,, the _ is stable for smalh and loses its stability via a Hopf bifurcation as
h is increased; ify> vy, the ¢ _ is stable for allh. There are no “stability windows” in the unstable region.

We show that the previously reported stability windows occur only when the equation is considered on a finite
(and small spatial interval[S1063-651X96)07210-§

PACS numbgs): 03.40.Kf, 05.45+b, 75.30.Ds

[. INTRODUCTION boundary conditions are impligchas therefore been rein-
forced for the damped driven systems.
The bifurcations and routes to chaos in the dynamics of a
In the past 15 years the role of low-dimensional spatiallysingle soliton were studied both numerically and analyti-
localized attractors in the nonlinear pal’tial differential equa'ca”y, main'y within perturbative and variational approaches
tions has been widely appreciated and a great depth of U’Ft:‘)—lf:{]. One of the main difficulties here is that soliton so-
derstanding of their properties achieved. Especially wellytions are not available in closed foriHere by soliton we
documented are the ac-driven damped sine-Gordon systemnean the NLS soliton, the sine-Gordon breather, and their
. : wave train counterparjsParticularly relevant for the present
0,,—0,,tsSig=—aq,+I'sifwr) @) work is Ref.[9], whgreﬁtshe spectru)r/n of linearized exrc):itations
) ] o ) was studied in order to understand the soliton’s instability
and its small-amplitude limit, the externally driven dampedy,echanism. Although providing an important qualitative in-

A. Motivation

nonlinear Schidinger equatiorNLS) sight into the dynamics of eigenvalues on the complex plane,
) ) ) ot the conclusions of9] were based on a heuristic ansatz for
W+ W+ 2| W[V = —iy¥ —he®t (2 the solution(the phase was assumed to be contand had

to be verified using the numerically found soliton profiles
Both systems have numerous applications in a variety of15].
fields, including long Josephson junctions, easy-axis ferro- In the undamped casey&0) the two coexisting soliton
magnets in microwave fields, and a rf-driven plasma. solutions can be found explicitly; the stability problem is
An initial step in the analysis of the damped driven NLS also more amenable to analytical study in this case. In par-
solitons was made by Kaup and NewEll. Under the as- ticular, one can prove that one of the solitons is unstédile
sumption that the damping and driving are weak, these awall h, not necessarily small ones. As far as the second soliton
thors developed an inverse scattering-based adiabatic pertus- concerned, it can lose its stability only via a Hopf bifur-
bation procedure to realize that solitons lock to the frequencygation[14].
of the driver. For smalh and v, there are two coexisting Terrones, McLaughlin, Overman, and Pearlstein consid-
phase-locked solitons, one corresponding to focus and thered the full damped driven NLS equation on a finite interval
other one to saddle of Kaup and Newell’s adiabatic equationgl5]. They constructed-periodic solutions perturbatively, as
(i.e., one soliton is stable and the other one unstable againpbwer series over small parameter multiplying the driver's
adiabatic perturbations of their amplitude and pha3his  strength and dissipation coefficient; also they have computed
result remains valid for the sine-Gordon breather, whosg¢hese solutions numerically. For small valueshaind y two
small-amplitude counterpart is the NLS solit(i. soliton wave trains were recovered corresponding to the
Subsequent computer simulations of E(f9.and (2) re-  saddle and focus of Kaup and Newell’s adiabatic equations.
vealed a rich variety of spatially coherent attractors, includ4in Ref.[15] the spatial period was linked to the value of the
ing temporally periodic and chaotic stafes-5]. A particu-  dissipation coefficient; more precisely, Terroretsal. took
larly important observation was that even in chaotic regimes|.=15.18 for y=0.1000, L=13.15 for y=0.1333,
the spatial structure of the field can be relatively simple and.=12.24 for y=0.1538, and.=10.73 for y=0.2000. For
described by only a few spatially localized solitonic modes.these values of and+y they solved numerically the linear-
A special role of the solitorfor soliton wave train if periodic ized eigenvalue problem and demonstrated the existence of
the Hopf bifurcation.
An interesting phenomenon encountered in R&5] was
*Electronic address: igor@uctvms.uct.ac.za the stability windows Increasing the driver’s strength for the
Electronic address: smirnov@maths.uct.ac.za fixed dissipation coefficient, the eigenvalue of the linearized
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operator crosses the imaginary axis into the right half of the a=g?y, T'=4g°%h, (7)
complex plan€unstable region then returns to the left half,
and then crosses into the unstable region again. There awgheree is the detuning of the sine-Gordon driving frequency
three Hopf bifurcations, therefore, and there is a certain refrom unity:
gion where the spatially periodic solution regains its stabil- )
ity. 3

In this paper we consider localized solutions of Et).on w=1- 2 (8)
the infinite intervalL—o. We obtain these solutions, soli-
tons, numerically, and then analyze their stability. Our mainEquation (6) implies that the sine-Gordon interval length
objective is to construct the existence and stability chart orlgg and the NLS interval, s are related as
the (h, y) plane. This chart will serve as the first step towards
the complete attractor chart of E@®), similarly to the attrac- Lnis=¢lse- 9

tor chart for theparametricallydriven NLS )
For example, the results of Ref{15] obtained for

W+ W+ 2| W20 = — iy — he M p* | (3) @=0.87a=0.04, andLsc=24 correspond to our Ed4)
with y=0.1538 and_y s=12.24.
which was constructed in Refk16,17].
Although the solitondi.e., solutions withy,(*~)=0] ll. FLAT-LOCKED SOLUTIONS:
and soliton wave traingfor which ¢(x+L)=(x)] may EXISTENCE AND STABILITY DOMAINS
look qualitatively similar when plotted on a finite interval
(—L/2,L/2), their respective domains of existence are differ-
ent. The stability of solutions is also very sensitive to the ~We start with the analysis of spatially homogeneous solu-
interval length; in particular, we demonstrate that, increasingions (¥,,=0) locked to the driver's frequency:
L, the stability windows of Terronest al, “close.” There ~ W(x,t)= €. The complex amplitude, satisfies the alge-
are no windows of stability on the stability chart of solitons braic equation
L=o). .

( The) paper is organized as follows. In Sec. Il we consider — ot 2|yl o= ~iygpo—h.

the spatially homogeneoy#fat) solution and analyze its sta- . : .
bility. In Sec. Il the upper and lower boundaries of existenceEquatlon(lo) was, of course, discussed befqi, for the

. . . ; most detailed analysis s¢&5]. We are, nevertheless, goin
domains of two solitons are found numerically. Section IV y €&5] going

X - . to reconsider it here because we will need some facts about
deals with the stability of the solitons. We show that one ofg . |~ 4" <o1ution in our study of solitons. The main dis-

the two solitons is always unstable and describe the stability, | .0 tom the work of Terronest al. is that we will con-

o, 22ue,of Sablly Mol 5aer EQ10 n the Whoe range of parameters, il those
' Y, ' uthors restricted themselves small values ofh and y.

:};ﬂ:gﬁozgagvzlgglrg?gﬁde Y;/t'é?aiﬁfglts of direct numerlcaIAISO note that there are some notational distinctigisour
' NLS equation(2) has different coefficients with respect to
those in[15]; (ii) our driverh is real and positive angy is
B. Relation to the sine-Gordon equation complex, whereas Terrones al. work with complexh and
Out of three parametets y, and(, only two are signifi- real positivegzzo; (iii ) the conclusions df15] are presented in
cant. Indeed, if¥’(x,t) is a solution of Eq(1) corresponding ~ the sine-Gordon r%ther than the NLS notation.
to h,y, andQ, ¥(x,t) = k¥ (kxk?) is the solution corre- writing ¢io=ae'’, Eq. (10) reduces to a system
sponding toh=k3h, Q=k2(Q), andy=k?y. Hence we may a4+ 2a%= — hcosd (11)
always fix, e.g.Q0=1 and retain onlyh and y as control ’
parameter$14,15.

A. Three branches of flat solutions

(10

I it ya=hsing. (12
Next, the substitutiont(x,t)=e''y(x,t) reduces Eq(1)
to an autonomous equation Eliminating 6, we obtain an equation cubic jsy=a:
F et g o+ 2| 2=~ yp—h. (4) 4p3—4p2+(1+ y?)po—h2=0. (13)

In this paper we will always be using the representatin Ay nositive rootp, of this equation defines a flat-locked
On several occasions we will touch upon the results of Ters

H — i
roneset al. [15]. These authors study the NLS equation, butsolutlon o= poe!", where
present their conclusions for the externally driven sine-

Gordon system, Eq.l). The correspondence between Egs. tang=
(1) and(4) is established by the formulas

Y
1-po

The analysis of Eq(13) is straightforward. First of all, it
cannot have real negative roofSubstitutep,= — g and ob-
tain a sum of four strictly negative termddence there are

_ _& either three positive roots or one positive and two complex-
X=¢ez, t=—r7; (6) )
conjugate roots. In terms of

q(7,2)=4eRdiy(t,x)e” 7]+ 0(&%); (5)
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FIG. 2. Amplitude of the spatially homogeneous solution versus

H 2 2
FIG. 1. CubicP(pg) for y*<1/3 and y*>1/3. From left to h. Left-hand curve,y<1/\/§; right-hand curvey>1/\/§.

right, ¥>=0.5, 0.35, and 0.01.

and the third, upper branch is given by
P(po)=pol4pG—4po+(1+ 9],

Yol*=p (7).
Eqg. (13) is rewritten as Vol "

) Here
P(po)=h=. (14
11
Wheny?=1/3, we havad P/dp,=0 and so Eq(14) has just p=(V)=3%¢% 1-39% (17)
one real root, whereas whert<1/3, there can be either one
or three real root$Fig. 1). N .
In the latter case the number of real roots is determined by B. Stability of flat solutions
the sign of the expression Next we proceed to the stability of the flat-locked solu-
Y133 [+2+1/9 2 t?ons. Takingz/f(x,t): P(x) + 5<//(x,t.), wherey(x) is a s.ta—
= ) —h2> tionary solution of Eq(4) and 8y is a small perturbation,
3 3 and linearizing Eq(4) abouty(x) yields
If Q<0, there are three real roots;@>0, there is just one. J(yi+vy)=Hy.
After some algebra, this criterion translates to the following
one: Herey(x,t) is a two-component column comprising of the
real and imaginary parts of the perturbation
3 roots if h_(y)sh=<h,(y),
. (15) _[Redy
1 root otherwise, y(x,t)= Iméy
where andH andJ are 2Xx2 matrices
1 1 1 fifa ) 0 -1
={ | A2+ |+ Z=H2
Summarizing, we have two cases. First, for1/\/3 and 2.4 2, .2 B
all h, we have just one flat-locked solutigthe right-hand | — I+ 1=2(3¢rt i) At
curve in Fig. 2. Second, fory<1/y/3 (the left-hand curve in —4yri — P+ 1-2(3¢ + yR)

Fig. 2 we have three branches of solutions: there are three (19

solutions forh lying betweenh_(y) andh,.(y) and only )
one solution ifh does not fall into this interval. The first Whered=a/ox. Finally, ¢r(x) and(x) represent the real

(lowes) branch satisfies and imaginary parts of the solutiop(x) whose stability is
examined. In the case at hanglz and ¢, are the real and
0<|ol?<p_(v); imaginary parts of the flat-locked solution),, i.e.,
o= rtith .
the secondmiddle) branch is Separating the time variable

p-(V=Igol’><p+(7); y(x,H)=z(x)e, (20)
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we arrive at the eigenvalue problem

5 R
Hz(x) = udz(x), (21) 1140 = = = T petedl®
where - /m;du\o'f\°“° Y
/
M=NT+y. (22 {
\
In generalz,u andz(x) are complex. T-he solutiom(x) will A N
be stable if Eq(21) does not have eigenvalugs with the N
real part greater thaip. 1/4p-mmmmmmn '\ k=0 instabilit
In the case of the homogeneous solutigfx) = s, the N KT INStabiily
eigenvalueu and eigenvectoz(x) can be found explicitly. e
Writing z(x) = ze~'¥*, we obtain a matrix eigenvalue prob- :
lem v/2 S0
(H—ud)zo=0, (23) (a) h
where
.y K2+1-2(3y3+ y?) — 4y Iol? e
— - S
“ — 4y K2+ 1-2(3y7+yR) )’ = gatione

with ¥zr=Reyy and ¢, = Imys,. Equating the determinant of
(Hx— xJ) to zero, we finally arrive at

— pP= (K4 1=20go|)(KP+1-6[¢g?). (24
If |yo|?<1/6, there are ndé’s such that
F (K%)= (2[ho|*— 1= Kk?) (6| tho|*— 1—k?)

is negative and so Reis always zero and the flat solution is
stable. Let us now assume thaf,|?>>1/6. Here we have
to differentiate between two cases. First, |ifo|?>1/4,
the minimum of the parabolaF(k?) occurs at
k?=4|yo|?—1>0 and is equal t& j,= — 4| o|*. The cor-

) : . 2 ’
responding Re is maximum and equals|2o|?. Conse- ol dulationally +”
quently, the peturbationd¢s will grow in this case if tnstable Y ,/
2| 4o|?>y. (This is the case of the modulation instabiljty. N

Second, if 1/62| ¢|2<1/4, the minimum of (k?) occurs
atk?=0. In this casd nin= (2| o|>— 1) (6| 4o|?— 1) and the
perturbation will grow if

= (2[00l >~ 1) (8]3ho| = 1)> 2. (25)
This is an instability with respect to spatially homogeneous 5\@\6
perturbations. The inequalit{25) amounts to 1/(2V3)1 '
1/4;
p-(N<|wol*<p+(9), / h
with p.. as in Eq.(17). Notice that since_(y)<1/4 only if (©
y<1/2, this type of instability may occur only in the region
y<1/2. FIG. 3. Flat-locked solutions and their stabilifg) y<1/2, (b)
1/2<y<1/y/3, and (c) y>1/\/3. Solid line, stable; long-dashed
C. Summary of flat solutions line, unstable against spatially inhomogeneous perturbations; short-

o ) ) ) dashed line, unstable against spatially homogeneous perturbations.
Summarizing, we have three typical situations.

(a) 0<y<1/2. This situation is presented in Figa®. We  p_(y)<|o|><1/4 is unstable with respect to flat perturba-
have three branches of flat solutions. The whole of the lowedions.
branch is stable[Here | ¢o|2<p_(y) andh<h,(y).] The (b) 1/2<y<1AW3. This situation is shown in Fig. (B).
whole of the upper branch as well as the upper part of th&imilarly to the casey<1/2, we have three branches here.
middle branch abovly,|?=1/4 are modulationally unstable. However, only a part of the lower branch, namely,
Finally, the lower part of the middle branch |y|?<y/2, is stable. The rest of it as well as the other two
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FIG. 4. Regions of stabilityblank and instability(shaded of FIG. 5. Asymptotic valud |2 versus the damping coefficient
the flat-locked solution on theh(y) plane. v. The shaded region is where no solitons can exist due to the
asymptotic exclusion principle.
branches, are modulationally unstable. In term#$ @ind v,
the inequality| o|?< ¥/2 translates intqv<h, (), where ized solution in the corresponding region. Bithandk are
— positive if the following three conditions are satisfied simul-
he (Y)=Vy" =y +yi2. (26)  taneously:(i) The discriminant of29) is positive

(c) y>1N3. This situation is depicted in Fig.(®. There y
is just one branch that is stable fogo|?<y/2 [i.e., for |llfo|2>§v (30)
h<h, ()] and modulationally unstable otherwise.

Finally, our (h,y) plane is decomposed into two infinite (jj) the product of two roots is positive
regions; see Fig. 4. A stable homogeneous solution exists in
the blank region; the domain of instability has been shaded. (2|40l — 1) (6] gho|?>— 1)+ y*>0, (32
The boundary between the two regions is given by

and (jii ) the sum of two roots is positive
ho(y), y<1/2

V=11, (), =172 27 8| ¢o|?—2>0. (32

Again, we have to consider several cases.

Ill. SOLITONS If y>1/4/3, the condition30) is stronger thari32), while
(31) is satisfied for all y|. This means that the condition for
the solitons nonexistence is simplyo|?> v/2 or, in terms of

Another type of insight provided by the analysis of the flath and y, h>h, (y), whereh,, is as in Eq.(26).
solutions is into the asymptotic behavior gpatially local- If 1/2<y< 1/{/3, the inequality(30) is still stronger than
izedsolutions. Indeed, ify(x) is a static solution approach- (32), while Eq.(31) amounts to
ing asymptotically the value ¢,, then denoting

A. Asymptotic behavior

8= (x) — o e find that |0l? € (0p-)U(ps ). (33
Resys Taking the intersection of33) and (30), one gets
yo= ( |m5¢) ,
satisfies |hol? 5P~ |U(ps =),
Hy(x)=yJy(x), (28)  wherep.=p.(y) are as in Eq(17).

_ Finally, when y<1/2, Eq. (32 is stronger than(30),
with J andH as in(18) and (19). Writing y(x)=e~'**, we  while p_ is smaller than 1/4. Thus the intersection (88)
obtain and(32) is simply

(K2+1=2]gh|)(K2+1—6|gg|) =72 (29 lol2>po ().

This equation has two rooﬂé and k%. Consequently, the These conclusions are summarized in Figs. 5 and 6. In
general solution of Eq(28) is a sum of four exponentials Fig. 5, dashed is the region where the solitons’ existence is
e* kX and e*'*2*_ If both k; and k, are real for certain excluded by the above asymptotic reasoning. In principle,
||, y(X) is not localized and so E@4) cannot have local- solitons could have existed far, on the middle brancfi.e.,
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ymptotic values on the middle branch were fouisde Sec.

|qpo|2 _____ e D). As we will show below, solitons exist only below the
-2 gotton line
o= p_(y), y<12
p+b —{ Vol 2, y=1n2
Consequently, the soliton’s existence region lies on the low-
est branch of | [see Figs. @&)—-6(c)].
1/44 Our final remark in this subsection is on the way the soli-
ton approaches its asymptotic value. Here our interest is mo-
______ tivated by indications that solitons with undulations on their
P- spatial “tails” can form bound statel8]. For | o|?< y/2,
v/2F ——— - the exponentk; and k, are a pair of complex-conjugate
values with nonzero real part. Consequently, each of the four
exponentials undergoes undulations. On the other hand,
(@) N when y<1/2 there is a region on théo|?,7) plane where
B both k? and k3 are negative. This region is defined by the
Iw |2 ,,,,,,,,,, intersection of Eq(31) and the inequality y|><1/4; it is
0 oo not difficult to realize that the intersection is
Y 2
g 5 <ldl*<p-(»). (349
P+ —
In this region solitons approach their asymptotic values
monotonically; according tp18], no bound states of solitons
may emerge under such circumstances. This region pertains
to the lowest branch of the flat-locked solutions. In terms of
h and vy, Eqg. (34) can be rewritten as
p-rm-= =" /o solitons 1
V2 - he(y)<h<h.(») |r<3| (35
1/41
(b) h B. Numerical solutions: Method
, For y=0, the equation
lol® 0 & ,
Q,’q\f.) b=t 2| ‘M y=—iyy—h (36)
o)
7,/2 _____________ e admits a pair of exact soliton solutiop$4]
B 1+ 2sinfa 3
Y= (X)= o 1+coshy cosiAX) /" (37)
Here « is defined by
1/41 o V2coska a8
(1+2cosKa)® (38)
h(«) being a monotonically decreasing functiow, is
uniquely determined b}. Next, i, is the asymptotic value
of both y_ and ¢, solitons:
(©) h
Ye(X) =iy as [x|—-x;
FIG. 6. Asymptotic value of the solitdny|? versus the driver’s
strengthh. Dashed lines, no solitons are possible with such ay, is real and positive:
| 4|2; solid lines, solitons with these asymptotic values are not ex-
cluded b\);_ the asympf/o_tic reasoning(a) y<1/2, (b) 1 39
1/2<y<1/y3, and(c) y>1/y3. ——— -3
7 Y Y0~ o1t 2005Ra)

between the curves)o|?>=p_(y) and|y,|?=p.(7) in Fig.
5]. In this case one pair of exponeritg, is imaginary and Finally, A has the meaning of “half the area” af, and
the other one K3, is real. However, no solitons with as- ¢_ and is equal to
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1.00 7 d
1Y 328 @ (M) + G ()=0, (42)
] 12
0903 / \ with the initial condition
] NS — 4
0.00 3 - P$(0)=y'. (43)
E A
] b Here (% is an initial guess for the soliton solution. Since
~0.50 H G(¢(7))—0asT—, () satisfies Eq(41). Our iteration
] ' ’y:O algorithm is based on the discretization of E42) with re-
3 U spect tor:
7 i
-1.00 3 '||' e
E Y 0 -
] ‘ plet= w<“>—Ar<“+1>(7) G(y'“), (44
3 X W e
-1.50 TT T T T - T T T [ T T Fr T T 7T T T [T T T T v 7T 11711
-30 -10 )
wherea=0,1,2, ... andAr@"= et ) s chosen
FIG. 7. ¢, and¢_ solitons in the undamped case=0. These SO as to minimize the residual
solutions are given by explicit formulas, Eq87). The behavior of
W+ (X) is qualitatively similar for all h; in this plot a=1 8 Y= max {|ReG,(')|,[ImG,('?)|}. (45
(h=0.243). l=n=N
. (For details se¢19].)
) 1 ) ) sinha . ) .
A=2¢q sinha== | ($5— 5 dx= ——==. Our continuation strategy was as follows. First, we used
2 J1+2cosRa the exact solutiong37) as an initial approximation for

(400 »=0.02 andh in the middle of the interval (Q2/27), i.e.,
. N for h=0.136. Second, we utilized the obtained numerical
SO'.Ut'onS ‘/{+(X) and ¢_(x) are plotted in Fig. 7. The solutions as initial approximations for the same 0.02 and
domain of. existence of both _of these extends fram0 to | o\ e and below 0.136. We advanced along hhaxis
a=2 Or, in terms of the driver's strength, froM=0 10 i the Newtonian iterations ceased to converge. The ab-
h=2/27=0.2722. . . sence of convergence may be caused by a bad initial approxi-
For y>0,_ no exact solutlon_s are available. We thereforemation; for this reason we had to decrease the increment
had to obtain solitons n_umerlcally. Our numerical schemeyp, in the neighborhood of the boundaries of the domain of
was based on the continuous analog of Newton’s method,isience. As a result, we were able to establish both the

(see[19] for review and references _ upper and the lower boundaries with the desired accuracy;
The finite difference version of E¢36), together with the  gae helow. Next, taking the numerical solutions at approxi-

discretized version of the open-end boundary condition%atew the middle of the domain of existence fgr=0.02
i(*L/2)=0, can be written in the form we employed them as initial approximations for the same

_ with y=0.04, then advanced up and down hin and the
G(#)=0, (4D process repeated.

_ : : . . . The bulk of calculations was performed on an interval
Vl\ﬂ/hif;(l/)f(—)(dfo;(flfi:t‘/r”zN:rll)Af thi)?lstV/?RIchi)SC)'U;gg- Vé'th (—L/2,L/2)=(—30,30), with the exception of the neighbor-
:”(G G” G” )is a nonI,inear operator défined by hood of the upper boundary of the domain of existence,

O =L PN+ where the solitons decay very slowly i In this neighbor-
Wos1t U 1— 20 hoo_d the interv_a_l length was increased appropriately. (_3e-
Gy= (Ax)2 — ot 2| ol P b iyt h, nerically, we utilized the second-order Newtonian algorithm

with the grid spacingAx=0.1; the neighborhood of the up-

_ per boundary was again an excepticee Sec. Il1D.

forn=12,..N, and Similarly to the case when=0, in the case of nonzero

— 3o+ AP — iy dissipation solitons generically come in pairs. By analogy
0= SAx , with the y=0 case, we denote theth, (x) and¢_(x). Fig-
ure 8 shows their profiles for several typitalHere we have
chosen values di not very close to the lower boundary; the
In-1— ANt 3PN behavior of solutions in the neighborhood of the lower
2Ax ' boundary can be quite peculiésee Fig. 10 beloy

Gn+1™

(Notice that we use a second-order finite difference approxi- ) .
. C. Existence domain: Lower boundary
mation both fory,, and ¢,.)
The idea of the continuous analog of Newton’s method is The value oth demarcating the lower boundary is usually
to introduce an auxiliary “evolution” parameterin such a referred to as théhresholddriving strength: for a givery,
way thaty satisfies the differential equation no localized solutions are possible foxhy, . Kaup and
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FIG. 8. Real and imaginary parts of tige. and_ solitons in the regiony<1/2. Herey=0.2; the valueh=0.130 is close to the lower
boundary of the existence domainy=0.127), but not exceedingly so. The poihts 0.28 and 0.284 represent solutions in the neighbor-
hood of the upper boundanh( =0.2845).

Newell have found 1], by means of the inverse scattering- for y<0.48 the above difference is even smaller. However,
based perturbation theory, the following estimate for theasy grows beyondy~0.5, the actuahy, gradually deviates
threshold value: from (2/7) y.
For h=hy, the two branches of localized solutions
(46) ¥y (X) andz//_(x) merge. The pointi= hy, is a turning point
therefore. We illustrate this fact by plottings(0)|?, the
modulus squared of the value ¢f.(x) in the middle of the
Spatschelet al.[11] and Terronest al.[15] reproduced Eq. interval, as a function oh (Fig. 9). _
(46) by expandingyr_(x) in a perturbation series in powers It is interesting to follow the evolution of. and ¢
of smallh and y. when h approaches the threshold value from above. The
The threshold value that we have found numerically istransformation ofs, into ¢_ is illustrated in Fig. 10.
plotted in Fig. 13 at the end of this section. For comparison,
we have also plotted the straight lihe= (2/77) y in the same D. Existence domain: Upper boundary
picture. Surprisingly, the deviation of the actual, from
(2/7)y is extremely small even for not very small For
example, fory=0.48 we have

2
hthr:; Y-

Let us now turn to theaupper boundary of the existence
domain. The upper boundary is different fgr, and ¢_
solitons and depends on Three typical regions can be iden-
tified as follows.
h;hr_ 3_10,3_ 47) (a) O=<vy=<1/2. Here we have three branches of flat solu-

y ' tions iy [Fig. 3(@]; the lowest branch is stable and the other
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1.5 Since we were looking foevensolutions, it was sufficient
to solve Eq(36) on a half interval (Q,/2) with the boundary
conditions #,(0)=¢,(L/2)=0. When x—», the solitons
decay to the valug, exponentially, as expf|Imk|x), where

k is given by Eq(29). Wheny grows from 0.02 to 0.48, the
exponent Imk| corresponding tdyo|>=p grows from 0.07

to 0.2. Consequently, choosing the half-interval length
L/Zj 300 we ensured thaty. (L/2)— | would not exceed
10°°.

Thus our numerical study shows that in the region
0<y<1/2 the upper boundary of the existence dom@amn
both ¢, and _ solitong is given by|¢o|>=p_() or, in
terms of the driver's strength, by=h_ (). As we approach
the knee of the hysteresis curye|?=|y,|%(h), i.e., as
|o|?—p_, the soliton ¢, (x) flattens out so that when
0.2 03 | h=h,(vy), the ¢+.(x) merges with .th.e .flat solution:

¥4 (X)=ty. [See Figs. @) and 8b).] This is in agreement
with the asymptotic analysis presented in Sec. Il C, where
we have shown that as—h_(vy) and |o|—p_(v), the
decay exponentk, ;3 0.

The second solutions_(x) does not flatten out as we
approach the hysteresis knee, although the decay exponents
do go to zero. The solutiogy_ remains localizedlFigs. §c)
and &d)], but the decay becomgmlynomialnot exponen-

. . ial. In the undam = hi n monstr
two branches are unstable. All numerically found :solltonsta the undamped casg=0, this can be demonstrated

¢, andy_ have their asymptotic values lying on the lowest explicitly. Sendinga—0 (h—2/27) in Bq.(37) yields
branch. It is natural to assume that the upper boundary of the

lw(0)12

L AN NN J NN B B N B R |

0.5

0.0

o
oTrT T T T T T T
o
o

FIG. 9. Modulus squared of the.. solitons in the middle of the
interval x=0 (solid line). Lower branch/y_(0)|?; upper branch,
|_(0)|%, the two branches merge at the turning point
hg=0.191 03. Also shown is the flat solutidgy|? (dashed ling
The branch| . (0)|?> merges with|yo|? at h, =0.300 23. In this
plot y=0.3.

domain of existence of the¢, and ¢_ coincides with the y (X)Hi x2=27/2

point h=h_ (), |¢o|>=p_(y), which separates the lowest - J6 x*+9/2°

branch of|,|? from the adjacent branch. We have verified

this hypothesis numerically. (b) 1/2<y<1W3~0.5774. In this region the curve

Our strategy was to find the solitong, and ¢ with  |y0|2=|y5|?(h) is similar to case(a); there are three
the asymptotic valugy|® as close top as possible. As  branches. However, the flat solution loses its stability not at
a closest asymptotic value we adopteth(y) the knee point but earlier, &tyo|?>= v/2 [Fig. 3b)]. On the
=p_(y)—1.0x10 % and examined an equidistant set of other hand, we know from the discussion in Sec. IlIA that
¥'s between 0 and 1/2y(=0.02,0.04,0.06.. . ,0.48). Forall  there can be no solitons withjo|?> on the lowest branch
thesey we were able to find botly, andy_ solitons with  above|,|?= y/2. Consequently, it is natural to assume that
the asymptotic valupyg|?=p(7y). Consequently, we can as- the upper boundary of the soliton’s existence domain, for
sert that the upper boundary of the existence donf@ia  both s, and_, corresponds thy,|%= /2. We examined
pressed in terms dff|?) is not farther away than 16 from  this hypothesis using the same criterion as in the region
the value| o|*= p_ (). In terms ofh, the proximity is even  y<1/2. Surprisingly, the results fa#, andy_ turned out to
closer. Deviating | from p_ by A(|4o|?)=10"3 results  be different.
in the deviationAh in h; this deviation can be easily found We examinedy=0.52, 0.54, and 0.56. For all thesés

by means of the explicit formula E¢13): we were able to find they, soliton at the distance
A(]¢o|?) =1.0x 10" 2 away from the valugy,|2= v/2, i.e.,
h= V&0l ®— 4] gho|*+ (1+ ) [¢ho|*. (48 for |yhy|2=(y/2)—1.0x10 2. The ¢, solution is shown in
Fig. 11.
For y<1/2 the above deviation is-10~°. (More precisely, As far as¢_ is concerned, the upper boundary of its

asv is increased fromy=0.02 throughy=0.48, the devia- domain of existence was seen to deviate substantially from
tion Ah decreases fromAh=3.7x10"% through Ah vI2. Namely, fory=0.52 we were unable to find thg_
=1.6x10 ©.) The smallness oAh is explained, of course, soliton for|q|? closer than & 102 to y/2; for y=0.54 and
by the fact that the derivativeh/d|y,|? goes to zero as 0.56 this gap was 8 102 and 11x 10 3, respectively(See
[o|2—p_ . Table |) Here the parameters of the numerical scheme were
Parameters of our numerical scheme were chosen consiax=10"3, 59=10"7, andL/2=600. We do not plot the
tently with the smallness of the incrememk. In order to be ¢ _ solitons as they look qualitatively similar to those arising
able to approach the value=h_ as close as the distance in the regiony<1/2.
Ah~10"% we had to require the residuéd5) to be not (c) y>1W3. In this region there is only one branch of flat
larger thans(®=10"". Here we took the second-order New- solutions for eacth. Similarly to case(b), the flat solution
tonian algorithm withAx=10"3, i.e., the truncation error becomes unstable fdgs|?>>y/2 and similarly to that case,
was of order Ax)2=10"°. there can be no solitons in the regipy|?> y/2. Our nu-
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FIG. 10. Transformation of the.. solitons ash approacheé$y,, the lower boundary of their domain of existence. Long-dashed line,
h=0.28; solid line,n=0.26; short-dashed liné,= hy,,=0.2548. Foth=0.2548,/, and¢_ become indistinguishable. Notice a change of
scale in(b) compared tda).

merical results in this region are also similar to céseThe  main of existence. The actual lower boundéagy (which is

¢, soliton exists for values ofy|* up to and including  the same for botky. andy_ solitong is shown by the lower
(y/2)—1072. On the other hand, the upper boundary of thesolid line. Again, the dashed and solid lines are graphically
existence domain for thg_ soliton was seen to be lower indistinguishable.

than (y/2)— 103 (see Table)l Figure 12 gives the profiles  Finally, the middle solid line is the stability boundary of
of the ¢, and ¢_ solitons in the regiony>1/\/3. The nu-  the ¢_ soliton. It will be discussed beloSec. IVB).

merical parameters in the vicinity of the upper boundary

were Ax=10"3, §(9=10"7, andL/2=600. IV. STABILITY OF SOLITONS

A. Spectrum structure

E. Soliton existence region: Summary To analyze the stability of they, and _ solitons, we

Our conclusions are summarized in Fig. 13. The uppenumerically solved the eigenvalue problé2i) with H as in
dashed line is given by Ed27) and demarcates the upper Eq. (19), with ¢(X),#(x) being the real and imaginary
boundary of the domain of existence of tife soliton. The parts of the corresponding soliton soluti¢found numeri-
upper solid line shows the upper boundary for the soli-  cally beforehand The solution is considered stable if
ton’s domain of existence. Far<1/2 this boundary is given Reu< 1y for all eigenvaluesu.
by the same equatio®27), whereas fory>1/2 it deviates Continuous spectrunBefore proceeding to results of the
from Egq. (27). This deviation is, however, quite small computation, we need to describe the spectrum structure of
(Ah~10"5-10"%) and not visible in the plot. the operatord 1H. When |x| -, the solitonsy.(x) ap-

The lower dashed line is a straight lide= (2/7)y; it proach the valu@,, Eq.(21) reduces to a matrix eigenvalue
yields an approximation for the lower boundary of the do-problem(23), and the eigenvalug and wave numbek are
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FIG. 11. ¢, soliton in the second region (:2y< 1/\/§). In this ploty=0.52. The transformation af. is shown as is increased from
hy=0.3319 throughh=0.360 840, which is close to the upper boundary of the existence ddmai0.360 843.

related by the dispersion formu[aé}). The number of real wo=(2|ho|2— 1) (6] o2~ 1). (49)
rootsky,k,, ... of Eq.(24) determines the multiplicity of
the continuous spectrum.

When |,|2<1/6, the continuous spectrum occupies theWhen|,|%>1/6, the continuous spectrum fills in the entire
whole imaginary axis of u outside the gap imaginary axis and the regionv<Reu<v on the real axis.
—we<Imu<wqy, where Here
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FIG. 12. Solitons in the third regionyt> 1/\/§). (@—(c) ¢, soliton in the neighborhood of the upper boundary of the existence domain.
In these plotsy=0.60 andh=0.394 92.(The upper boundary ik, =0.394 97) (d)—(f) ¢_ soliton for y=0.66. Solid line, solution at the
thresholdh=hy,,=0.424 25; dashed line, soliton near the upper boundar.4251. For thisy the value ofh, is 0.4265; however, no
¢ _ solitons withh>0.4259 were found.
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0.60  h ., operatorJ 'H has two discrete eigenvalues: and — 7.
r o7 (This is true for bothiy_ and ¢, solitons) The eigenvalue
C ,,9" p= results from the translational invariance. The corre-
r /’ sponding exponerit in Eg. (20) is equal to zero; the corre-
r 7 sponding eigenfunctior(x) is given by
0.40 C
[ d [Rey.(X)
- Z(X)= — .
L dx | Imy.(x)
0.20 _ The negative eigenvalye= — y arises due to the symmetry
B u— — u discussed above.
L ¥ B. Numerical solution of the eigenvalue problem
0,00y o We define a grid with spacingx=_L/(N+1):

FIG. 13. Existence and stability chart for the soliton solutions of
the externally driven, damped NLS. The upper and lower solid lines
show the upper and lower boundaries of the solitons’ existence
domain. The middle solid line is the line of the Hopf bifurcation; with x,= —L/2 andxy.;=L/2, and introduce redl,, g,
above this line the solitogy_ is unstable. The upper dashed line is
given by Eq.(27) and demarcates the boundary of stability of the S(Xp,t) = (f,+ign e Yt
flat-locked solution; the lower dashed line is the straight line
h=(2/m)y. Below y~0.66, these dashed lines are graphically in- Approximating the derivatives by second-order finite differ-
distinguishable from the soliton’s existence boundaries. Téhey ences, we reduce the differential eigenvalue prob(2i to

L
xn=—§+nAx, n=12,...N,

not completely coincide, howevdsee the tejt a matrix eigenvalue problem of the form
Hz=puJz 50
V=22 6lga =1, |ol*<1/4 : 0
y=
2| ol | 4ol > 1/4. Herez is a 2N-component vector

f

Discrete eigenvaluesan be complex and real. }f is an _l
eigenvalue with the eigenfunctiaz(x), its complex conju-
gateu* is also an eigenvalue with eigenfunctigh(x). This fn
follows simply from the fact thaH is an operator with real g1
coefficients. A less trivial observation is that u*) will be
an eigenvalue as well; the proof of the latter is relegated to
the Appendix. N

Thus real eigenvalues df *H will always appear in pairs
w and — u; complex eigenvalues will occur in quadruplets: ahdH andJ are (NX2N) block matrices
m, —m, p*, and —u*. For any values oh and v, the

—D?+u w
H:
w —D?%+vp

TABLE I. Numerically calculated upper boundary of the exist-
ence domain for they_ soliton. Herep, denotes the value of

|| for which they_ soliton still exists;h, is the corresponding 0 -1

h: hy=h(p,). Next, p, is the lowest value dffyso|? for which New- J= -

tonian iterations did not converge and we were unable to find the

¢ _ soliton.h, is the corresponding: h,=h(p,). The actual upper ] .

boundary lies somewhere betwelepandh,. The entries of théN X N blocksu, v, w, andl are given by
2 42

Y y/2 pP1 P2 hy h, umn:{l_2(3¢R+ ’pl)|x=xn}5mn1

0.52 0.26 0.254 0.255 0.360 79 0.360 80 by o

0.54 027 0262 0263 036846  0.36848 Vmn=11= 2397 + ¥R) x=x,} Smn.

0.56 0.28 0.269 0.270 0.376 53 0.376 57

0.60 0.30 0.298 0.299 0.394 88 0.394 92 Wipn= _41’/le’0”><:>< .

0.64 0.32 0.307 0.308 0.414 12 0.414 21 n

0.66 0.33 0.324 0.325 0.425 85 0.425 86

lnn=Omns  MN=1,2,... N. (51)
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Finally, D? is anN X N matrix arising from the discretization
of the second derivative

—D2: 1
(Ax)*
2 -1 0 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0 0
X
0 o -1 2 -1 0
0 0 o -1 2 -1
0 0 0 o -1 2

(52

Since we are interested iiscrete eigenvalues, we im-
posed the Dirichlet boundary condition$y/(+L/2)=0,
which translate into

fo=fnr1=90=0On+1=0. (53

Equations(53) have been taken into account in deriving Eq.
(52.

Having fixed y, we increased from hy, to h=h_(y);
results turned out to be qualitatively similar for al0.3.
Let us start with thay_ solution.

As we have already mentioned, there always is an eigenA
value uo= vy (or, equivalently, there always is an exponent
Ao=0) corresponding to the translational symmetry. When
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again. On the contrary, no stability windows were observed
in our calculations(This contradiction is to be rectified be-
low.) After the pair of complex-conjugate eigenvalues have
crossed into the unstable half plane, their real parts were
monotonically growing.

Curiously enough, als approaches the upper boundary of
the domain of existenceh(~h,) the limit value of Re. is
almost independent of. More precisely, asi—h_ (), the
real part ofu tends to approximately 0.3. This observation
provides a simple estimate for the valueyoédbove which no
Hopf bifurcations may occur. Indeed, for>0.3, Reu can-
not exceedy and so thay_ soliton is stable for alh (see the
stability chart Fig. 13

Now we turn to they, soliton. As we have already men-
tioned, ath=hy, (the turning point wherey, and ¢ _
merge there is a nontranslational eigenvajue y. (There is
also its negative partn@gr= — y, but we are concentrating on
the positive eigenvalugAs h is increased, this real eigen-
value grows beyond, reaches a maximum, and then starts
decreasing. This evolution is accompanied by the restructur-
ing of the continuous spectrum. Asjo|?> grows beyond
1/6, the gap— wo<Imu<wq in the continuous spectrum
closes. Now the continuous spectrum fills in the entire imagi-
nary axis and, on the top of this, the regienv<<Reu<wv on
the real axis. The value is smaller thany but grows as is
increased. Finally, wheh reaches the upper boundary of the
domain of existencdh,(y) for y<1/2 and h,(y) for
v>1/2, respectivel}; v reachesy. This is a point of bifur-
cation where the solitony, merges with the flat solution.
ccordingly, at thish the real eigenvalug. reachesy from
above and immerses into the continuous spectrum.

h=hy,, we have a turning point and, consequently, there is

one morezero exponenh,=0. That is, ath=hy, we have

C. Stability windows

two pairs of discrete eigenvalues: the translational eigen-

value o=y and its negativéu, v (we shall disregard
these two eigenvalues in what folloyysind the turning point
eigenvalugu, =y and its negativgr, = — y.

As we increasdn, the eigenvalueg.; and — u, approach

It is important to trace the origin of the contradiction be-
tween our results and conclusions of Rdf5], in particular
to clarify the issue of stability windows. We shall demon-
strate that the contradiction stems simply from the fact that

each other along the real axis, and coalesce at the origif.erroneset al. consider much shorter intervalls
Then w, passes on to the positive imaginary axis, and Terroneset al. impose periodic boundary conditions on
— w1 to the negative imaginary axis, and the separation beperturbationssy(x),

tween them increases. Asis increased further, another pair
of pure imaginary eigenvalues, and — u, detaches from
the continuum(We recall that the continuous spectrum oc-
cupies the imaginary axis outside the
—wo<Imu<wgy.) Subsequently,u; coalesces withu,,
— uq With — u,, and all four eigenvalues move away from
the imaginary axis. We end up with a quadruplet u*,
—w, and—u*.

On further increasindp, the real part ofu and u* grows
and, at a certaimh=hy,,, becomes equal tg. This is a
point of the Hopf bifurcation; foh> hy,y, the solitony_ is
unstable.

gap

SY(—LI2)=6y(LI2), O (—LI2)= 3y, (LI2), (54

whereas in Sec. IVB we worked with the Dirichlet condi-
tions

S(£L12)=0. (55)

In order to eliminate a possible effect of the boundary con-

The above scenario is almost coincident with the scenariditions, we have now replaced our vanishing conditits®

described i 15]; there is just one distinction. Terronesal.

by the periodic condition$54). In terms of the discretized

observed what they called the stability windows: after theeigenfunctions, this amounts to replacing EGsS) by

first Hopf bifurcation, the pair of complex-conjugate eigen-
values u and p* crossed back into the stable half plane

Reu< vy and then returned to the unstable regionuRey

fo=fn, fne1=f1, 9o=0On, On+1=01. (56
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The only consequence of this substitution is that the matrix Re\

—D? [Eq. (52)] is replaced by 020 3 L=12.238
~ 1 :
_D2—_~ _ ;
P a0 :
0.10 F
2 -1 0 0 o .- 0o -1
-1 2 -1 0 0 0 -
-0.00— —
0 -1 2 -1 0 0 s
X . g
0 o -~ 0 -1 2 -1 O0 -0.10 -
0 0 -1 2 -1 —y {
-1 0 0 0 o -1 2 0.20 Lttt U
%05 040 045 020 025 030
(57 (@)
The D2 and D2 are only different in their lower left and ReA
upper right corner entries. 0.20

In Egs. (51), ¢_=yr+iy, satisfies its standard “open
end” boundary conditiong/, (= L/2)=0. Sincey_(x) is an
even function, these boundary conditions are equivalent to 0.10
periodic ~ conditions (—L/2)=y(L/12), & (—L/I2)
=i,(L/2). Thus we examine the stability of exactly the
same solution as Terrones al.

IIIII[III[IIIIIIIII'IIIII‘II[T[IIIIIIIlI[lIIIl

Those authors report the occurrence of the stability win- 000 — T T A T T T~ — T\T
dows for the following two sets of the sine-Gordon param-
eters:Lgg=24, «=0.04,(a) »=0.87, and(b) »=0.90. Us-
ing Egs.(7)—(9), one gets the corresponding NLS values -0.10 L=12.238
(8) Lns=12.2376, y=0.1538, h——0_5303 TS S e
®) .05 0.10 0.15 0.20 0.25 0.30

r
(b)  Lns=10.7331, y=0.2000, h= 0.3578 FIG. 14. Maximum growth rate Re(=Reu— vy) as a function

of h for y=0.1538. Solid line,L=12.238; short-dashed line,

(Here I' and h are the sine-Gordon and NLS driving L=15; long-dashed linel.=60. (a) Periodic boundary conditions
strengths, respectively. for eigenfunctions(b) vanishing boundary conditions. The horizon-

We have calculated the eigenvalyedor the first set of (@l straight-line portions of the curvelsvhere Ra=—y) corre-
control parameters, ie., we took =12.2376, fixed SPONd to pure imaginary eigenvalugs For h=0.12 all three
y=0.1538, and varieth. The growth rate Re=Rew— vy is curves practically coincide.
plotted in Fig. 14a) (solid line). Clearly seen is the region N ] ) o
where Ra <0, the stability window. The values df at ary_co_ndmons on eigenfunctions E5). S|m|lar_ly to the
which the solution restabilizes exactly correspond to thos@eriodic case, the curve Reh) changes substantially &sis
given in Ref.[15]. increased from 12.238 to 15, but on fgrther increases, results

It is appropriate to emphasize here that although we havéettle down[see Fig. 14b)]. For sufficiently large intervals
analyzed exactly the same eigenvalue problem as Terronéb =60 in our caspdiscrete eigenvalues are insensitive to
et al, their numerical approach was totally different. Thosethe type of the boundary conditions.
authors worked with théruncated Fourier expansion, while ~ Concluding, we may claim that stability windows may
we use the finite-difference approximation. Consequentlyoccur only for sufficiently small interval lengths. This phe-
the exact correspondence of our results with resultil6f ~ homenon is apparently of the same origin as the stabilization
rules out any chance of numerical error. of the upper branch of the flat solution when the interval is

We next increased the length of the integration intervafmade sufficiently shorf15]. The instability is caused by
(from L=12.238 toL =15) keepingy fixed. Surprisingly, long-wavelength perturbations that cannot arise on short in-
this minor change resulted in that the stability window hastervals.
closed[the short-dashed curve in Fig. (®f. On further in-
creasingd., the stability interval did not reappedihe long-
dashed line in Fig. 14) shows the growth rate fdr=60.]

For the sake of comparison we repeated the calculation The principal result of this study is the chart of phase-
for the same values df andy, but with the Dirichlet bound- locked attractors on theh(y) plane[Fig. 13]. This chart

V. CONCLUDING REMARKS AND OPEN PROBLEMS
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1.5 - h periodic boundary conditions, whereas the present article
deals withinfinite intervals. In their numerical calculations,
Terroneset al. focus on rather short intervals~ 10-15, for
which the effect of the boundaries cannot be neglected. Ac-
cordingly, some properties of theieriodic solutionsdiffer
substantially from properties aolitonsreported in this pa-
per. In particular, as we have observed for 0.1538, it is
sufficient to increase the interval length frdm-12 to 15 to
see the stability window of thé_ solution closing.

Second, the aim of Refl5] was to give a theoretical
explanation for results of the available numerical simula-
- tions; accordingly, the authors §15] restricted their atten-

- tion to several specific values of. On the contrary, our
- objective here is to provide a global view: to chart the whole
o Y (h,y) plane according to habitats of various flat and solitonic
7 B S TR T atractors. |
As we mentioned on several occassions, there are three

FIG. 15. Existence and stability chart for thmarametrically characteristic regions of the dlSSIpat!On coefficiept: 1/2_’.
driven NLS equatior(3) as from Ref[16]. (The driving frequency ~ 1/2<7¥< 113, and y> 1/\/3- The existence and stability
Q has been normalized to unityThe structure of the chart is very Properties of flat and solitonic solutions depend on which
similar to Fig. 13. The lowest line is the lower boundary of the rf€gion we are in. Results of Ref15] are confined to the
soliton existence domain; in the parametric chgg=y. The up-  regiony<<1/2.
permost curve is given byi=1+ 2 and plays the role of the One may argue that in applications, the damping and driv-
upper boundary of the existence domain. Although the soliton doeig are weak, so does it really make sense to consider large
exist above this line, it is unstable there, together with the zerovalues ofh and y? The answer is that, apart from their own
solution, against continuous spectrum excitations. Finally, therole in plasma, optics and other applications, the damped
middle line is the curve of the Hopf bifurcation; on crossing this driven NLS solitons describe small amplitude breathers of
line the stationary soliton loses its stability to a temporally periodicthe damped driven sine-Gordon equatidh. The damping

solution. The structure of the unstable dom&above the Hopf —and driving coefficients of the two equations are related by
bifurcation ling is shown in Fig. 16. Eq. (7):

1.0 |

0.5

comprises the existence and stability domains of the spatially a

homogeneous solution and two coexisting solitgns and Y= o2 h= 453 (58)

_ . While ¢, is unstable for alh and v, stability proper-

ties of ¢ depend on whethey is greater or smaller than i

Yer, Wherey,~0.3. Wheny> y,,, the #s_ soliton is stable Where the detuning

for all h; when y<w,,, the increasing oh results iny_

losing its stability via a Hopf bifurcation. e=2(1l-w) (59
The classification of the phase-locked attractors on the

(h,y) plane is the first step towards the_construction of thegets as a small parameter. Consequently, even if the sine-
completeattractor chart. Our next step will be to study non- 4.qon dissipation coefficient and driving strengtf™ are

linear structures in the region where tile soliton is un-  gmall their NLS counterparts may be quite large.
stable, i.e., above the Hopf bifurcation curve. Here some i is instructive to make a link to results afirect com-

guidance can be gained from the analysis of a twin problemy, ter simulations of the sine-Gordon and NLS equations
namely, theparametricallydriven NLS equation16]. Figure  gyailable in literature.

15 displays the existence and stability chart for the para- Ngzaki and Bekki[6] simulated the NLS equatiof?)
metrically driven damped soliton; it bears a striking similar- i, y=0.1 on a relatively large interval=50 and found
ity to our chart for the externally driven NL&ig. 13. ItiS  hat the soliton becomes unstable for-0.11. This is in

therefore natural to expect that the structure of the attracmﬁerfect agreement with the valtig,~=0.11, which we have
op! Ly

chart above the Hopf bifurcatrion curve will also be similar. pained in the numerical solution of the eigenvalue problem
Figure 16 is the complete chart of attractors for the paraisec. |vB).

metrically drivgn case Fhat we reproduce frpm RE7]. In their computer experiments with the sine-Gord&8®)
See;n are two lines of dlﬁgrent types of t.ran5|t|0n“to. C_h_aosequation(l), Bishop et al. [8] set a=0.04, Leg=24, and
pe_rloo,l’ do_ubllng gnd quasiperiodic, meeting at a “tricritical produced an attractor chart on thd,) plane for
point.” It is tempting to expect that the to_pogra_phy of attrac- o 1< (.19 and 0.8 w=0.94. In terms of the NLS control
tors of the externally driven NLS equation will be qualita- parameters, these simulations correspond to=9514 0.33.

tively similar. Numerical simulations of E@2) available for oo

severaly [6—12] do not contradict this hypothesis. Eliminating s between(58) and (59, we have
It is pertinent to emphasize two main distinctions of our

study from the work of Terronest al. [15]. First, those au- la

thors analyze solutions onfaite interval (—L/2,L/2) with w=1-7 v (60
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FIG. 16. Attractor chart of the parametrically driven, damped NLS equation from R&f.Below the straight lindn= vy (the lowest line
in this plot the only attractor is the trivial ong=0. Above the lineh=+/1+ 72 (the uppermost line in the pictur¢he trivial solution is
unstable with respect to continuous spectrum waves. Line 1 is the Hopf bifurcation curve; stable stationary solitons exist below and to the
right of this curve. On crossing curve 1, stationary attractors are replaced by temporally periodic $oladked by empty circlgsThese
can subsequently bifurcate into double-periodic, four-, and eight-periodic solisbiaslowed boxg¢s Small white blobs and shadowed
diamonds represent more complicated attractpesiods 6, 7, 10, and temporally chagtiébove curve 2, empty triangles mark the area
where only the trivial attractor exists; black triangles stand for spatiotemporal chaotic states. An alternative scenario of the transition to chaos
occurs on crossing line 3; here the periodic soliton is replaced by the spatiotemporal chaotic attractor without any intermediate period
doubling. The two scenarios “meet” at a tricritical poiht=0.81,y=0.25. Finally, in the region above the litie= "1+ »? and to the left
of the Hopf bifurcation curve 1, the instability of the zero solution develops into spatiotemporal chaos.

Thus, for the fixed SG damping, the frequencyw is com- Spatschelet al. [11] simulated the NLS equatiof2) on
pletely specified by the NLS damping fixing w is equiva-  an intervalL =40 for a variety ofh and y (v<<0.25). Their
lent to fixing y. The SG forcind” is then proportional to the experimental points fit very well into the<0.25 portion of
NLS forcing h, our stability chart Fig. 13.
Finally, it has remained unclear what happens to the soli-
a\ 32 ton ¢_ as |o|?— y/2 in the regiony>1/2. As we men-
F:4(—) h. (61)  tioned in Sec. 1lID, we were unable to find the solution
_ close enough to the valugl,|?= y/2; the Newtonian
iterations ceased to converge a certain finite distance away
from /2. (This is in a sharp contrast to the case of the
solitons, which turned out to exist arbitrarily close to the
value |1//o|2—y/2) It would be interesting to understand
whether the upper boundary of the existence domain of the

- . - . 2_ . .
the breather is unstable; this interval should shrinkwais "b.— soliton is m_deed different fromo|"= /2 or this is
increased. This was indeed observef@idhfor not very small simply a numerical effect caused by an anomalously small

detuningss =0.45(that is, foro=<0.9): see Fig. 1 ifig]. For radius of convergence of Newton’s method in the neighbor-

smaller detunings (larger w) results start to deviate. This hood of the boundary.
may be attributed to the fact that the NLS interval corre-
sponding to Lgg=24 becomes very short
(LNLSZSLSG< 108)

Taki et al. [10] studied the sine-Gordon equation with  We would like to thank M. M. Bogdan, in conversations
a=0.004,Lsc=80, ®=0.98, and 0.05851'<0.116. This  with whom the idea of this work was borne and shaped. We
corresponds toy=0.1 andL,,s=16. ForI'=0.0038, the are grateful to R. Cross, V. B. Priezzhev, I. V. Puzynin, B.
breather lost its stability via a Hopf bifurcation. The corre- D. Reddy, N. Robertson, and A. Rynhoud for useful discus-
sponding h is equal to 0.12, which is close to our sions and M. Bondila for her computational assistance. This
hropi=0.11; the difference should be attributed to the smallresearch was supported by the FRD of South Africa, Univer-
ness of the interval. sity Research Council of UCT and Laboratory for Comput-

Assume that the NLS damping coefficieptis fixed and
forcing h varied. Figure 13 shows that the largeris, the
smaller the range di for which the NLS soliton is unstable.
Translating to the sine-Gordon variables, E@#) and (61)
imply that for fixede andw there is an interval oF 's where
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ing Techniques and Automation of JINR. The work of Yu. S. erator in the Hilbert space, the conjugate operabrdoes
Smirnov was also supported by the Russian Foundation afot, in general, have to have an eigenvaitfe Consider, for
Fundamental Resear¢@rant No. 94-01-01119 example, a shift operatof defined on infinite sequences
X=(Xq,X2,...):
APPENDIX

The aim of this appendix is to show thatfis a discrete T(X1,X2,X3, .. .)=(X2,X3,Xg, . ..). (A1)
eigenvalue of the operatdr *H [Eq. (21)], —u* is an ei-
genvalue as well. To this end we define an auxiliary operatolt is easy to see thay=0 is an eigenvalue of, with an
A eigenvector (1,0,0..). However, the conjugate operator
T' does not have a zero eigenvalue. This follows from the
A,=H—pnJd, fact that the kernel space @t (i.e., the space of alt such
that T'x=0) is given byR(T)*, the orthogonal complement
of the range ofT. Since the range of the shift operaté)
obviously coincides with the entire spacR(T)* consists
only of the zero element and 9 has no zero eigenvalues.
A, z(X) = nz(X), Fortunately, this situation does not arise for discrete ei-
genvalues of differential operatof@hose eigenfunctions are
n* W'” be an eigenvalue of the Hermitian-conjugate opera-smooth and exponentially decaying at infinilishe reason

yIRl

whereu is a complex parameter arddis given by Eq.(18).
If 7 is an eigenvalue oh,,

tor A where is that these eigenvalues can be approximated by eigenvalues
of finite-dimensional matrices. For instance, one can ap-
Ty t— — roximate derivatives by finite differencéas we do in Sec.
Al=H—u*IT=H+u*I=A_ .. p y €as

IV B) or use a truncated expansion over some complete set of

(Notice that taking the Hermitian conjugate amounts to refunctions(which is the approach of Ref15]). In any case,
placingu by — u*.) Assume now thaty(x) is an eigenfunc- sendingN—c, one of the eigenvalues of tHéX N matrix
tion of the operatod *H corresponding to the eigenvalue Ay Will approach the discrete eigenvalue of the differential
o: operatorA: ny— 7. On the other hand, ifpy is an eigen-
value of the matrixAy, the Hermitian-conjugate matri&;,
_ will have an eigenvaluepy . When N—, the sequence

H2o(X) = sod20(X). 7N converges to a discrete eigenvalue of the Hermitian-
This zy(x) is, at the same time, an eigenfunction of the op-conjugate operatohA’, which is therefore equal tg*.
era_torAM pertaining to the parameter valye=u, and ei- Returning to the shift operator EgA1), notice that its
genvaluen=0: zero eigenvalueannotbe approximated by a sequence of
finite-dimensional matrix eigenvalues. In particular, if we at-
tempt to use a finite-dimensional shift operator with periodic

ApugZo(X)=(H = uod)2o(x) =0. boundary conditions

The conjugate operatdk;io (:sz;) will also have an ei-

genvaluen* =0; this implies that- u§ is an eigenvalue of

J H. Q.E.D. we will immediately find that eigenvalues of the latter are
There is one point in the above proof that requires a wordjiven by exp(zrin/N), n=0,1, ... N—1. None of these tend

of caution. If  is an eigenvalue oA\, a non-Hermitian op- to zero adN—o.

TN(X]_,XZ, e rxN):(X21X3! XN !Xl)l
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